1. เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 2
http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น
หลักในการแก้อสมการพหุนาม
1. ทาให้ข้างใดข้างหนึ่งเป็น 0
2. ทาให้สัมประสิทธิ์ของตัวแปรที่มีกาลังมากสุดเป็น
3. แยกตัวประกอบ
4. เขียนเส้นจานวน
** ระวัง ค่า x ที่ทาให้ส่วนเป็น 0 ต้องเป็นช่วงเปิด
เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556
ตอนที่ 1 แบบระบายตัวเลขที่เป็นคาตอบ จานวน 10 ข้อ ข้อละ 2 คะแนน รวม 20 คะแนน
1. ตอบ 4
จากอสมการ ( 1)( 3)
0
(2 1)
x x
x x
สามารถเขียนเส้นจานวนได้ดังรูป
ดังนั้นจานวนเต็มที่สอดคล้องกับอสมการดังกล่าวมี 4 จานวนคือ -1 , 1 , 2 , 3 นั่นเอง
2. ตอบ 25
จากที่เรารู้ว่า 2i เป็นคาตอบของสมการ ( ) 0P x
2i จะเป็นคาตอบของสมการ ( ) 0P x ด้วย
เนื่องจาก ( )P x เป็นพหุนามกาลัง 3 ดังนั้นจะต้อง
มีคาตอบของสมการ ( ) 0P x อีกคาตอบหนึ่งด้วย
สมมติให้ตัวประกอบอีกตัวหนึ่งคือ mx n
นั่นคือ ( ) ( 2 )( 2 )( )P x x i x i mx n
ดังนั้น 3 2 2 2 2
( ) 2 12 ( 4 )( ) ( 4)( )P x x ax bx x i mx n x mx n
เมื่อเทียบสัมประสิทธิ์ของ 3
x เลยทาให้เราได้ว่า 2m
เมื่อเทียบสัมประสิทธิ์ของพจน์ค่าคงที่พจน์สุดท้าย เลยทาให้เราได้ว่า 3n
สรุป : 2
( ) ( 2 )( 2 )(2 3) ( 4)(2 3)P x x i x i x x x
ดังนั้น (1) (1 4)(2 3) 25P
ทฤษฎีที่เกี่ยวกับรากของสมการพหุนาม
กาหนดให้ เป็นพหุนามที่มีสัมประสิทธิ์
เป็นจานวนเต็ม หากเรารู้ว่าจานวนเชิงซ้อน เป็น
คาตอบของสมการ แล้ว เราจะได้ว่า
จะเป็นคาตอบของสมการ ด้วย ^^
-1 0 3-
2. เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 3
http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น
ความสัมพันธ์ระหว่างการ dot และการ cross
สาหรับเวกเตอร์ ใดๆ เราจะได้ว่า
(นั่นคือ เวกเตอร์สามารถเลื่อนไปทางขวาได้ 1 ตาแหน่ง
ทั้ง 3 เวกเตอร์ในทางเดียวกันในทานองว่าเป็น loop
โดยที่เครื่องหมาย และเครื่องหมาย ยังต้องอยู่ที่เดิม)
3. ตอบ 0.75
จาก 2 3b a จะได้ว่า 3
2
b a
จากกฎของไซน์ sin sinA B
a b
จะได้ว่า
3
2
sin sin 2A A
a a
นั่นคือ 3
2
sin 2
sin
A
A
แต่จาก sin2 2sin cosA A A
ดังนั้น 3
sin 2sin cos
2
A A A
นั่นคือ 3
cos 0.75
4
A นั่นเอง
4. ตอบ 8
จาก v u w w v u
จะได้ว่า v u w v w u
2 4 2 3i j k i j k
( 1)(2) ( 2)(1) ( 4)( 3)
8
หมายเหตุ
1. สาหรับเวกเตอร์ u และ v ใดๆ เราจะได้ว่า u v v u
2. ถ้า u ai b j ck และ v di e j f k จะได้ว่า u v ad be cf
ความรู้เพิ่มเติม 1 : ความรู้พื้นฐานเกี่ยวกับการดาเนินการตามแถว
การดาเนินการตามแถว (Row Operation) คือกระบวนการที่เราจะปรับรูปแบบของเมทริกซ์เพื่อให้ได้
เมทริกซ์ใหม่ที่สะดวกต่อการคานวณมากขึ้น มีอยู่ด้วยกัน 3 ลักษณะคือ
1. คูณแถวที่ i ด้วยค่าคงที่ k (เมื่อ 0k ) เขียนแทนด้วยสัญลักษณ์ ikR
2. สลับแถวที่ i กับแถวที่ j เขียนแทนด้วยสัญลักษณ์ ijR
3. คูณแถวที่ i ด้วยค่าคงที่ k (เมื่อ 0k ) แล้วนาไปบวกกับแถวที่ j (แถวที่ j จะเปลี่ยนแปลง)
เขียนแทนด้วยสัญลักษณ์ i jkR R
โดยเราจะใช้เครื่องหมาย ~ แทนการดาเนินการตามแถวในแต่ละขั้นตอน และเขียนกากับไว้ทุกขั้นตอน
กฎของไซน์สาหรับสามเหลี่ยมทั่วไป
สามเหลี่ยม ABC ที่มี
ความยาวด้านตรงข้าม
มุม A , B, C คือ a , b ,c
ตามลาดับ เราจะได้ว่า
กฎของไซน์ คือ
หมายเหตุ : นะครับ :))
A
B Ca
bc
3. เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 4
http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น
เช่น กาหนดให้
1 4 2
2 1 0
0 3 4
A
ถ้าเมทริกซ์ ~A B โดยการดาเนินการ 32R จะได้ว่า
3
1 4 2
2 1 0
0 6 8 2
B
R
ถ้าเมทริกซ์ ~B C โดยการดาเนินการ 1 22R R จะได้ว่า 1 2
1 4 2
4 7 4 2
0 6 8
C R R
ถ้าเมทริกซ์ ~C D โดยการดาเนินการ 23R จะได้ว่า
23
1 4 2
0 6 8
4 7 4
D
R
ความรู้เพิ่มเติม 2 : การแก้ระบบสมการกับการดาเนินการตามแถว
จากระบบสมการ
11 12 13
21 22 23
31 32 33
a x a y a z
a x a y a z
a x a y a z
1
2
3
b
b
b
เราสามารถเขียนเป็นเมทริกซ์แต่งเติม (Augmented Matrix) ได้เป็น
11 12 13 1
21 22 23 2
31 32 33 3
a a a
a a a
a a a
b
b
b
ซึ่งไม่ว่าเราจะใช้การดาเนินการตามแถวทั้ง 3 แบบที่ได้กล่าวมาแล้วข้างต้น กับเมทริกซ์แต่งเติมนี้
อย่างไรก็ตาม เราจะได้ว่า คาตอบของระบบสมการจะไม่เปลี่ยนแปลง
5. ตอบ 17
จากระบบอสมการที่โจทย์กาหนดให้
2 3
3
2 5 5
x y z a
x y b
x y z c
เขียนเป็นเมทริกซ์ได้เป็น
1 2 3
1 3 0
2 5 5
a
b
c
แต่โจทย์กาหนดให้
1 2 3 1 2 3 9
1 3 0 ~ 0 1 3 5
2 5 5 0 0 1 2
a
b
c
แสดงว่าระบบสมการจะไม่เปลี่ยนไป
ซึ่งจาก
1 2 3 9
0 1 3 5
0 0 1 2
จะทาให้เราได้ว่า 2z , 3 5y z และ 2 3 9x y z
นั่นคือ 1x , 1y และ 2z
ซึ่งจากโจทย์จะได้ว่า 2 5 5 2(1) 5( 1) 5(2) 17c x y z