ݺߣ

ݺߣShare a Scribd company logo
รหัสวิชา 39 คณิตศาสตร์ หน้า 1
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
รหัสวิชา 39 คณิตศาสตร์
สอบวันเสาร์ที่ 5 มกราคม 2556
เวลา 11.00 - 12.30 น.
ชื่อ - นามสกุล ........................................................................................... เลขที่นั่งสอบ ..........................................
สถานที่สอบ .............................................................................................. ห้องสอบ ...............................................
เอกสารนี้ สงวนลิขสิทธิ์ของสถาบันทดสอบทางการศึกษาแห่งชาติ (องค์การมหาชน)
การท้าซ้้าหรือดัดแปลงหรือเผแแรร่งานดังกล่าว ะถถูกด้าเนินคดีตามกหหมาแ
สถาบันฯ ะถแ่อแท้าลาแข้อสอบแลถกรถดาษค้าตอบทั้งหมด หลังะากปรถกาศผลสอบแล้ว 3 เดือน
รหัสวิชา 39 คณิตศาสตร์ หน้า 2
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
ค้าชี้แะง
แบบทดสอบนี้มีวัตถุประสงค์เพื่อวัดความรู้ความเข้าใจในเนื้อหาวิชาคณิตศาสตร์ โดยจะนาผลที่ได้ไปใช้ประกอบ
การพิจารณาคัดเลือกบุคคลเข้าศึกษาในสถาบันอุดมศึกษาในระบบรับตรง ปีการศึกษา 2556
ลักษณถแบบทดสอบ แบบทดสอบฉบับนี้มี 9 หน้า แบ่งเป็น 2 ตอน
ตอนที่ 1 แบบระบายตัวเลขที่เป็นคาตอบ จานวน 10 ข้อ
ตอนที่ 2 แบบปรนัย 5 ตัวเลือก เลือก 1 คาตอบที่ถูกที่สุด จานวน 20 ข้อ
วิธีการตอบ ให้ใช้ดินสอดา 2B ระบายในวงกลมที่เป็นคาตอบในกระดาษคาตอบ
เกณฑ์การให้คถแนน (คะแนนเต็ม 100 คะแนน)
ตอนที่ 1 ข้อ 1 - 10 ข้อละ 2 คะแนน
ตอนที่ 2 ข้อ 11 - 30 ข้อละ 4 คะแนน
ข้อปฏิบัติในการสอบ
1. เขียนชื่อ-นามสกุล เลขที่นั่งสอบ สถานที่สอบ และห้องสอบ บนหน้าปกแบบทดสอบ
2. ตรวจสอบชื่อ-นามสกุล เลขที่นั่งสอบ รหัสวิชาที่สอบ เลขประจาตัวประชาชน 13 หลัก ในกระดาษ
คาตอบว่าตรงกับตัวผู้สอบหรือไม่ กรณีที่ไม่ตรงให้แจ้งผู้คุมสอบเพื่อขอกระดาษคาตอบสารอง
แล้วกรอก / ระบายให้ถูกต้องสมบูรณ์
3. อ่านคาแนะนาวิธีการตอบข้อสอบให้เข้าใจ แล้วตอบข้อสอบด้วยตนเองและไม่เอื้อให้ผู้อื่นคัดลอกคาตอบได้
4. เมื่อสอบเสร็จ ให้สอดกระดาษคาตอบไว้ในแบบทดสอบ
5. ไม่อนุญาตให้ผู้เข้าสอบออกจากห้องสอบ ก่อนหมดเวลาสอบ
6. ไม่อนุญาตให้ผู้คุมสอบเปิดอ่านข้อสอบ
รหัสวิชา 39 คณิตศาสตร์ หน้า 2
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
ตอนที่ 1 แบบรถบาแตัวเลขที่เป็นค้าตอบ ะ้านวน 10 ข้อ
ข้อลถ 2 คถแนน รวม 20 คถแนน
1. จานวนเต็มที่สอดคล้องกับอสมการ ( 1)( 3)
0
(2 1)
x x
x x
 


มีทั้งหมดกี่จานวน (ข้อสอบ 7 วิชาสามัญ 56)
2. กาหนดให้ 3 2
( ) 2 12P x x ax bx    เมื่อ a และ b เป็นจานวนจริง
ถ้า 2i เป็นคาตอบของสมการ ( ) 0P x  แล้ว (1)P มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56)
3. กาหนดให้ a และ b เป็นความยาวด้านตรงข้ามมุม A และมุม B ของรูปสามเหลี่ยม ABC ตามลาดับ
ถ้า 2 3b a และ ˆˆ 2B A แล้ว cos A มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56)
4. ถ้า 2 3u i j k   และ 2 4v w i j k   
แล้วค่าของ  v u w  เท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56)
5. ถ้า , ,x y z สอดคล้องกับระบบสมการ
2 3
3
2 5 5
x y z a
x y b
x y z c
  
 
  
และ
1 2 3 1 2 3 9
1 3 0 0 1 3 5
2 5 5 0 0 1 2
a
b
c
    
       
      
แล้ว c มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56)
6.   7 5log 625 log 343 มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56)
รหัสวิชา 39 คณิตศาสตร์ หน้า 3
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
7. ตารางแจกแจงความถี่สะสมของคะแนนสอบวิชาคณิตศาสตร์ของนักเรียนกลุ่มหนึ่งเป็นดังนี้
คะแนนสอบ ความถี่สะสม (คน)
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 ขึ้นไป
10
35
80
145
185
195
200
ถ้าสุ่มเลือกนักเรียนมาหนึ่งคนจากกลุ่มนี้ ความน่าจะเป็นที่จะได้นักเรียนที่ได้คะแนนสอบในช่วง
50-59 คะแนน เท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56)
8. ต้องการสร้างจานวนที่มี 7 หลัก จากเลขโดด 7 ตัว คือ 1 , 2 , 3 , 3 , 4 , 5 , 6
โดยให้เลข 3 สองตัวอยู่ติดกัน จะสร้างได้ทั้งหมดกี่จานวน (ข้อสอบ 7 วิชาสามัญ 56)
9. ถ้า
3 2
2
2 3
n
n n
a
n n
 
 
เมื่อ 1,2,3,n 
แล้ว lim n
n
a

มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56)
10. ค่าสูงสุดสัมบูรณ์ของฟังก์ชัน 3 2
( ) 3 9 1f x x x x    บนช่วง  1,2 มีค่าเท่ากับเท่าใด
(ข้อสอบ 7 วิชาสามัญ 56)
รหัสวิชา 39 คณิตศาสตร์ หน้า 4
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
ตอนที่ 2 แบบปรนัแ 5 ตัวเลือก เลือก 1 ค้าตอบที่ถูกที่สุด
ะ้านวน 20 ข้อ ข้อลถ 4 คถแนน รวม 80 คถแนน
11. ถ้า S x x เป็นจานวนเต็มที่สอดคล้องกับอสมการ log ( 15) 2x x  
แล้วจานวนสมาชิกของเซต S เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 10 2. 12 3. 14
4. 24 5. 26
12. กาหนดให้ a เป็นจานวนเต็มบวก
ถ้า ห.ร.ม. ของ a และ 2520 เท่ากับ 60 และ ค.ร.น. ของ a และ 420 เท่ากับ 4620
แล้ว a อยู่ในช่วงในข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. [200,350) 2. [350,500) 3. [500,650)
4. [650,800) 5. [800,950)
13. กาหนดให้ ( )P x เป็นพหุนามดีกรี 4 ซึ่งมีสัมประสิทธิ์เป็นจานวนจริงและสัมประสิทธิ์ของ 4
x เท่ากับ 1
ถ้า 1z และ 2z เป็นรากที่ 2 ของ 2i และเป็นคาตอบของสมการ ( ) 0P x  ด้วย
แล้ว (1)P มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 3 2. 5 3. 7
4. 9 5. 10
14. ในระบบพิกัดฉากที่มี O เป็นจุดกาเนิด วงรีรูปหนึ่งมีสมการเป็น
2 2
( 3) ( 5)
1
9 25
x y 
 
ถ้า 1F และ 2F เป็นจุดโฟกัสของวงรีรูปนี้ โดยที่ 1 2OF OF แล้วระยะทางจากจุด 2F
ไปยังเส้นตรงที่ผ่านจุด 1F และ (0,5) เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 19
5
หน่วย 2. 21
5
หน่วย 3. 22
5
หน่วย
4. 23
5
หน่วย 5. 24
5
หน่วย
รหัสวิชา 39 คณิตศาสตร์ หน้า 5
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
15. กาหนดให้ ,A B และ C เป็นจุดในระบบพิกัดฉาก 3 มิติ จงพิจารณาข้อความ 4 ข้อความต่อไปนี้
(ก) 0AB BC CA  
(ข) AB BC AB BC 
(ค) AB BC CA BA  
(ง)    AB BC CA CA AB BC    
จานวนข้อความที่ถูกต้องเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 0 (ไม่มีข้อความใดถูกต้อง) 2. 1 3. 2
4. 3 5. 4
16. กาหนดให้  , ,0    ถ้า 2
sin sin
3
    และ 2
cos cos
3
  
แล้ว   มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1.
6

 2.
3

 3. 2
3


4. 4
3

 5. 5
3


17. ผลบวกของคาตอบทั้งหมดของสมการ
 52
5 5 1
x
x x

   เท่ากับข้อใดต่อไปนี้
(ข้อสอบ 7 วิชาสามัญ 56)
1. 5 2. 5
2
 3. 0
4. 5
2
5. 5
18. ผลบวกของคาตอบทั้งหมดของสมการ  4 1
4 2 65 2x x
  เท่ากับข้อใดต่อไปนี้
(ข้อสอบ 7 วิชาสามัญ 56)
1. 2 2. 1
2
 3. 3
2
4. 2 5. 4
รหัสวิชา 39 คณิตศาสตร์ หน้า 6
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
19. กาหนดระบบสมการ
2 3 3 28
2 12
10
x y z
x y z
x y z
  
  
  
ถ้า     , , , ,S a b c a b c เป็นคาตอบของระบบสมการที่กาหนด โดยที่ , ,a b c เป็นจานวนเต็ม
ซึ่งอยู่ในช่วง  10,10
แล้วจานวนสมาชิกของเซต S เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 13 2. 14 3. 15
4. 16 5. 17
20. นักเรียนห้องหนึ่งมีจานวน 30 คน สอบวิชาคณิตศาสตร์ได้เกรด A 5 คน ได้เกรด B 15 คน
และได้เกรด C 10 คน ถ้าสุ่มนักเรียน 3 คนจากห้องนี้แล้ว ความน่าจะเป็นที่จะได้นักเรียน
อย่างน้อย 1 คนที่ได้เกรด A เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 44
203
2. 55
203
3. 66
203
4. 77
203
5. 88
203
21. อายุการใช้งานของถ่านไฟฉายชนิดหนึ่งมีการแจกแจงปกติ มีค่าเฉลี่ยเลขคณิตเท่ากับ  นาที
และส่วนเบี่ยงเบนมาตรฐานเท่ากับ  นาที ถ้า a เป็นจานวนจริงที่ทาให้ถ่านไฟฉายที่ใช้งานได้
นานระหว่าง a  และ a  นาที มีจานวน 34% แล้วถ่านไฟฉายที่ใช้งานได้นานระหว่าง
2a  และ 2a  นาที มีจานวนคิดเป็นเปอร์เซ็นต์เท่ากับข้อใดต่อไปนี้
เมื่อกาหนดตารางแสดงพื้นที่ใต้เส้นโค้งปกติดังนี้ (ข้อสอบ 7 วิชาสามัญ 56)
Z 0.215 0.34 0.44 0.68 0.88 0.99
พื้นที่ 0.085 0.133 0.17 0.25 0.31 0.34
1. 58.5 2. 62 3. 64
4. 68 5. 81
รหัสวิชา 39 คณิตศาสตร์ หน้า 7
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
22. ข้อมูลชุดที่ 1 คือ 1 2 3 9, , , ,x x x x โดยที่ 3
5
i
i
x   ทุก i
ข้อมูลชุดที่ 2 คือ 1 2 3 9, , , ,y y y y โดยที่ iy a j  ทุก j
เมื่อ a เป็นจานวนจริงที่ทาให้  
9
2
1
i
i
x a

 มีค่าน้อยที่สุด
ถ้า b เป็นจานวนจริงที่ทาให้
9
1
j
j
y b

 มีค่าน้อยที่สุด
แล้ว b มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 1 2. 2 3. 3
4. 4 5. 5
23. กาหนดให้ฟังก์ชัน ( )f x เป็นปฏิยานุพันธ์ของ 2 5x 
และความชันของเส้นโค้ง ( )y g x ที่จุด  ,x y ใดๆคือ 2
3x
ถ้ากราฟของฟังก์ชัน f และ g ตัดกันที่จุด  1,2
แล้ว (1)
f
g
 
 
 
มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. -5 2. -2 3. 1
4. 2 5. 5
24. กาหนดให้ ( )g x เป็นฟังก์ชันซึ่งมีอนุพันธ์ที่ทุกจุด และ
2
| 1|
; 1
1
( )
( ) ; 1 2
2 3 ; 2
x
x
x
f x
g x x
x x

  

  
  
ถ้า f ต่อเนื่องที่ทุกจุด แล้ว
2
1
( )g x dx

 มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 3
2
 2. 1
2
 3. 0
4. 1
2
5. 3
2
รหัสวิชา 39 คณิตศาสตร์ หน้า 8
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
25. กาหนดให้
 1 3 5 2 1
n
n
a
n

    
และ
2 4 6 2
n
n
b
n

   
จะได้ว่าอนุกรม  
1
n n
n
a b


 เป็นอนุกรมดังข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. มีผลบวกเท่ากับ 1
2
 2. มีผลบวกเท่ากับ 0
3. มีผลบวกเท่ากับ 1 4. มีผลบวกเท่ากับ 1
2
5. ลู่ออก
26. กาหนดให้  3, 2, 1,1,2,3S     และ
1 2 3
4 5
6
0 , 1 6
0 0
i
a a a
M a a a S i
a
  
       
    
สุ่มหยิบเมทริกซ์จากเซต M มา 1 เมทริกซ์ ความน่าจะเป็นที่จะได้เมทริกซ์ ซึ่งค่าดีเทอร์มิแนนท์
ของเมริกซ์นั้นเท่ากับ 27 หรือ 27 เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 3
2
6
2. 3
4
6
3. 3
6
6
4. 3
8
6
5. 3
10
6
27. ถ้า A และ B เป็นเซตของจานวนเชิงซ้อน โดยที่
 1 5 6A z z z     และ  1 7 4B z z z    
แล้วจานวนสมาชิกของ A B เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 0 2. 1 3. 2
4. 3 5. มากกว่าหรือเท่ากับ 4
28. กาหนดลาดับซึ่งประกอบด้วยจานวนเต็มบวกทุกจานวนที่หารด้วย 5 ไม่ลงตัว เรียงจากน้อยไปหามาก
ถ้าผลบวกของ n พจน์แรกของลาดับนี้เท่ากับ 9000 แล้ว n มีค่าเท่ากับข้อใดต่อไปนี้
(ข้อสอบ 7 วิชาสามัญ 56)
1. 100 2. 110 3. 120
4. 130 5. 140
รหัสวิชา 39 คณิตศาสตร์ หน้า 9
วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น.
29. กาหนดให้  1,2,3,4,5,6A 
 2
( ) ( ) , ,B p x p x ax bx c a b c A    
สุ่มหยิบ ( )p x มาหนึ่งตัวจากเซต S ความน่าจะเป็นที่จะได้ ( )p x ซึ่ง
1
0
( )p x dx มีค่าเป็น
จานวนเต็ม เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 1
12
2. 2
12
3. 3
12
4. 4
12
5. 5
12
30. กาหนดให้กราฟของ อนุพันธ์ของฟังก์ชัน f เป็นดังรูป
นักเรียนคนหนึ่งได้สรุปว่า f ต้องเป็นดังข้อความต่อไปนี้
(ก) f(x) = - x เมื่อ 2 3x 
(ข) f เป็นฟังก์ชันลด เมื่อ 0 2x 
(ค) f มีจุดต่าสุดสัมพัทธ์ที่จุด 4x 
(ง) f มีจุดสูงสุดสัมพัทธ์ที่จุด 1x 
จานวนข้อความที่นักเรียนคนนี้สรุปได้อย่างถูกต้อง เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56)
1. 0 (ไม่มีข้อความใดถูก) 2. 1
3. 2 4. 3
5. 4

 


Y
X
1 2 3 4 5 6
1
-1 
เมื่อ
y = f (x)
เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 2
http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น
หลักในการแก้อสมการพหุนาม
1. ทาให้ข้างใดข้างหนึ่งเป็น 0
2. ทาให้สัมประสิทธิ์ของตัวแปรที่มีกาลังมากสุดเป็น 
3. แยกตัวประกอบ
4. เขียนเส้นจานวน
** ระวัง ค่า x ที่ทาให้ส่วนเป็น 0 ต้องเป็นช่วงเปิด
เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556
ตอนที่ 1 แบบระบายตัวเลขที่เป็นคาตอบ จานวน 10 ข้อ ข้อละ 2 คะแนน รวม 20 คะแนน
1. ตอบ 4
จากอสมการ ( 1)( 3)
0
(2 1)
x x
x x
 


สามารถเขียนเส้นจานวนได้ดังรูป
ดังนั้นจานวนเต็มที่สอดคล้องกับอสมการดังกล่าวมี 4 จานวนคือ -1 , 1 , 2 , 3 นั่นเอง
2. ตอบ 25
จากที่เรารู้ว่า 2i เป็นคาตอบของสมการ ( ) 0P x 
 2i จะเป็นคาตอบของสมการ ( ) 0P x  ด้วย
เนื่องจาก ( )P x เป็นพหุนามกาลัง 3 ดังนั้นจะต้อง
มีคาตอบของสมการ ( ) 0P x  อีกคาตอบหนึ่งด้วย
สมมติให้ตัวประกอบอีกตัวหนึ่งคือ mx n
นั่นคือ ( ) ( 2 )( 2 )( )P x x i x i mx n   
ดังนั้น 3 2 2 2 2
( ) 2 12 ( 4 )( ) ( 4)( )P x x ax bx x i mx n x mx n         
 เมื่อเทียบสัมประสิทธิ์ของ 3
x เลยทาให้เราได้ว่า 2m 
 เมื่อเทียบสัมประสิทธิ์ของพจน์ค่าคงที่พจน์สุดท้าย เลยทาให้เราได้ว่า 3n 
สรุป : 2
( ) ( 2 )( 2 )(2 3) ( 4)(2 3)P x x i x i x x x      
ดังนั้น (1) (1 4)(2 3) 25P    
ทฤษฎีที่เกี่ยวกับรากของสมการพหุนาม
กาหนดให้ เป็นพหุนามที่มีสัมประสิทธิ์
เป็นจานวนเต็ม หากเรารู้ว่าจานวนเชิงซ้อน เป็น
คาตอบของสมการ แล้ว เราจะได้ว่า
จะเป็นคาตอบของสมการ ด้วย ^^
-1 0 3-
 
เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 3
http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น
ความสัมพันธ์ระหว่างการ dot และการ cross
สาหรับเวกเตอร์ ใดๆ เราจะได้ว่า
(นั่นคือ เวกเตอร์สามารถเลื่อนไปทางขวาได้ 1 ตาแหน่ง
ทั้ง 3 เวกเตอร์ในทางเดียวกันในทานองว่าเป็น loop
โดยที่เครื่องหมาย  และเครื่องหมาย  ยังต้องอยู่ที่เดิม)
3. ตอบ 0.75
จาก 2 3b a จะได้ว่า 3
2
b a
จากกฎของไซน์ sin sinA B
a b
 จะได้ว่า
3
2
sin sin 2A A
a a
 นั่นคือ 3
2
sin 2
sin
A
A 
แต่จาก sin2 2sin cosA A A
ดังนั้น 3
sin 2sin cos
2
A A A
นั่นคือ 3
cos 0.75
4
A   นั่นเอง
4. ตอบ 8
จาก    v u w w v u    
จะได้ว่า    v u w v w u     
   2 4 2 3i j k i j k      
( 1)(2) ( 2)(1) ( 4)( 3)      
8
หมายเหตุ
1. สาหรับเวกเตอร์ u และ v ใดๆ เราจะได้ว่า u v v u   
2. ถ้า u ai b j ck   และ v di e j f k   จะได้ว่า u v ad be cf   
ความรู้เพิ่มเติม 1 : ความรู้พื้นฐานเกี่ยวกับการดาเนินการตามแถว
การดาเนินการตามแถว (Row Operation) คือกระบวนการที่เราจะปรับรูปแบบของเมทริกซ์เพื่อให้ได้
เมทริกซ์ใหม่ที่สะดวกต่อการคานวณมากขึ้น มีอยู่ด้วยกัน 3 ลักษณะคือ
1. คูณแถวที่ i ด้วยค่าคงที่ k (เมื่อ 0k  ) เขียนแทนด้วยสัญลักษณ์ ikR
2. สลับแถวที่ i กับแถวที่ j เขียนแทนด้วยสัญลักษณ์ ijR
3. คูณแถวที่ i ด้วยค่าคงที่ k (เมื่อ 0k  ) แล้วนาไปบวกกับแถวที่ j (แถวที่ j จะเปลี่ยนแปลง)
เขียนแทนด้วยสัญลักษณ์ i jkR R
โดยเราจะใช้เครื่องหมาย ~ แทนการดาเนินการตามแถวในแต่ละขั้นตอน และเขียนกากับไว้ทุกขั้นตอน
กฎของไซน์สาหรับสามเหลี่ยมทั่วไป
สามเหลี่ยม ABC ที่มี
ความยาวด้านตรงข้าม
มุม A , B, C คือ a , b ,c
ตามลาดับ เราจะได้ว่า
กฎของไซน์ คือ
หมายเหตุ : นะครับ :))
A
B Ca
bc
เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 4
http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น
เช่น กาหนดให้
1 4 2
2 1 0
0 3 4
A
 
   
  
 ถ้าเมทริกซ์ ~A B โดยการดาเนินการ 32R จะได้ว่า
3
1 4 2
2 1 0
0 6 8 2
B
R
 
   
    
 ถ้าเมทริกซ์ ~B C โดยการดาเนินการ 1 22R R จะได้ว่า 1 2
1 4 2
4 7 4 2
0 6 8
C R R
 
    
   
 ถ้าเมทริกซ์ ~C D โดยการดาเนินการ 23R จะได้ว่า
23
1 4 2
0 6 8
4 7 4
D
R
 
    
  
ความรู้เพิ่มเติม 2 : การแก้ระบบสมการกับการดาเนินการตามแถว
จากระบบสมการ
11 12 13
21 22 23
31 32 33
a x a y a z
a x a y a z
a x a y a z
  
  
  
1
2
3
b
b
b
เราสามารถเขียนเป็นเมทริกซ์แต่งเติม (Augmented Matrix) ได้เป็น
11 12 13 1
21 22 23 2
31 32 33 3
a a a
a a a
a a a
 
 
 
 
b
b
b
ซึ่งไม่ว่าเราจะใช้การดาเนินการตามแถวทั้ง 3 แบบที่ได้กล่าวมาแล้วข้างต้น กับเมทริกซ์แต่งเติมนี้
อย่างไรก็ตาม เราจะได้ว่า คาตอบของระบบสมการจะไม่เปลี่ยนแปลง
5. ตอบ 17
จากระบบอสมการที่โจทย์กาหนดให้
2 3
3
2 5 5
x y z a
x y b
x y z c
  
 
  
เขียนเป็นเมทริกซ์ได้เป็น
1 2 3
1 3 0
2 5 5
a
b
c
 
  
  
แต่โจทย์กาหนดให้
1 2 3 1 2 3 9
1 3 0 ~ 0 1 3 5
2 5 5 0 0 1 2
a
b
c
    
      
      
แสดงว่าระบบสมการจะไม่เปลี่ยนไป
ซึ่งจาก
1 2 3 9
0 1 3 5
0 0 1 2
 
 
 
  
จะทาให้เราได้ว่า 2z  , 3 5y z  และ 2 3 9x y z  
นั่นคือ 1x  , 1y   และ 2z 
ซึ่งจากโจทย์จะได้ว่า 2 5 5 2(1) 5( 1) 5(2) 17c x y z       
เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 5
http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น
6. ตอบ 12
  7 5log 625 log 343
log625 log343
log7 log5
 
4 3
log5 log7
log7 log5
 
4log5 3log7
12
log7 log5
  
7. ตอบ 0.20
จากตารางที่กาหนดให้ ต้องหาความถี่
จากความถี่สะสมก่อน ดังตาราง
ดังนั้นนักเรียนทั้งหมดมี 200 คน
และมีนักเรียนที่สอบได้คะแนนในช่วง
50-59 คะแนนทั้งหมด 40 คน
ดังนั้น เมื่อสุ่มนักเรียนมา 1 คน
ความน่าจะเป็นที่จะได้นักเรียนที่ได้
คะแนนสอบในช่วง 50-59 คะแนน เท่ากับ 40
0.20
200

8. ตอบ 720
โจทย์กาหนดให้เลข 3 ทั้งสองตัวต้องอยู่ติดกัน
เราจึงต้องมัดเลข 3 ทั้ง 2 ตัวไว้ด้วยกัน ดังนี้
1 , 2 , 3,3 , 4 , 5 , 6
ดังนั้นการสร้างจานวนที่มี 7 หลัก จากเลขโดด
7 ตัว ดังกล่าว ก็คือการสลับของที่แตกต่างกัน
ทั้งหมด 6 ชิ้นนั้นเอง ซึ่งสามารถทาได้
6! 720 วิธี นั่นเอง
คะแนนสอบ ความถี่สะสม (คน) ความถี่
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 ขึ้นไป
10
35
80
145
185
195
200
10
25
45
65
40
10
5
สมบัติของ log สาหรับข้อนี้
กาหนดให้
และ เป็นจานวนจริงใดๆ
1. เมื่อ คือฐาน log ใหม่ที่ต้องการ
2.
หลักการพื้นฐานของการเรียงของติดกัน
หากเราต้องการให้สิ่งของใดอยู่ติดกัน ให้มัดรวมของเหล่านั้น
อยู่ด้วยกัน แล้วนับว่าเป็นของเพียง 1 ชิ้น และอย่าลืมคิด
ด้วยว่า ของที่เรามัดอยู่ติดกันนั้นสามารถสลับตาแหน่งกัน
ได้ด้วย ยกเว้น!!! ของที่เรามัดติดกันนั้นมันเหมือนกัน
เพราะของเหมือนกันสลับที่กันไม่ทาให้เกิดวิธีใหม่นะครับ^^
เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 6
http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น
9. ตอบ 3
3 2
2
lim lim
2 3
n
n n
n n
a
n n 
 
  
  
3 2 2
2
( 3) ( 2)
lim
( 2)( 3)n
n n n n
n n
   
  
  
4 3 4 2
3 2
3 2
lim
3 2 6n
n n n n
n n n
   
  
   
3 2
3 2
3 2
lim
3 2 6n
n n
n n n
 
  
   
2 3
2
3
lim
3 2 6
1
n
n
n n n

 
 
  
   
 
3
10. ตอบ 12
จาก 3 2
( ) 3 9 1f x x x x   
จะได้ว่า 2
( ) 3 6 9f x x x   
ให้ ( ) 0f x  เพื่อหาค่าวิกฤต
จะได้ว่า 2
3( 2 3) 0x x  
นั่นคือ ( 3)( 1) 0x x  
 3x   หรือ 1x 
แต่ต้องระวัง  เพราะข้อนี้โจทย์
กาหนดให้เราพิจารณาในช่วง  1,2
ดังนั้นค่าวิกฤตจึงคิดเฉพาะ 1x 
เพราะว่า (1) 4f   , ( 1) 12f   และ (2) 3f 
ดังนั้น ค่าสูงสุดสัมบูรณ์ของฟังก์ชัน 3 2
( ) 3 9 1f x x x x    บนช่วง  1,2 มีค่าเท่ากับ 12
หลักการพื้นฐานของการหาลิมิตของลาดับ
ให้ดูดีกรีที่มากที่สุดของเศษและส่วน
1. ถ้า เศษ < ส่วน : ลิมิตจะตอบ 0
เช่น
2. ถ้า เศษ > ส่วน : ลิมิตจะตอบไม่มีค่า(เป็นจานวนจริง)
เช่น ไม่มีค่า
3. ถ้า เศษ = ส่วน : ลิมิตจะตอบค่าส.ป.ส. เศษ  ส่วน
เช่น
หมายเหตุ : ถ้าเป็น ไม่มีค่า  ไม่มีค่า จะยังสรุปไม่ได้
ต้องจัดรูปใหม่ก่อนเสมอ แล้วจึงหาค่าของลิมิตใหม่อีกครั้ง
หลักการพื้นฐานของการหาสุดขีดสัมบูรณ์
ในการหาค่าสุดขีดสัมบูรณ์ของ บนช่วง
ขั้นที่ 1 : หาค่าวิกฤตทั้งหมดของฟังก์ชัน โดยหา
ได้จาก แต่จะพิจารณาเฉพาะ
ค่าวิกฤตที่อยู่ในช่วง เท่านั้นนะครับ
ขั้นที่ 2 : หาค่าของฟังก์ชันที่ตาแหน่งค่าวิกฤต
ขั้นที่ 3 : หาค่าของฟังก์ชันที่ตาแหน่ง และ
ขั้นที่ 4 : เปรียบเทียบค่าที่ได้จากขั้นที่ 2 และขั้นที่ 3
ค่าที่มากที่สุด = ค่าสูงสุดสัมบูรณ์
ค่าที่น้อยที่สุด = ค่าต่าสุดสัมบูรณ์

More Related Content

ข้อสอบ 7 วิชาสามัญ Math2556

  • 1. รหัสวิชา 39 คณิตศาสตร์ หน้า 1 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. รหัสวิชา 39 คณิตศาสตร์ สอบวันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 - 12.30 น. ชื่อ - นามสกุล ........................................................................................... เลขที่นั่งสอบ .......................................... สถานที่สอบ .............................................................................................. ห้องสอบ ............................................... เอกสารนี้ สงวนลิขสิทธิ์ของสถาบันทดสอบทางการศึกษาแห่งชาติ (องค์การมหาชน) การท้าซ้้าหรือดัดแปลงหรือเผแแรร่งานดังกล่าว ะถถูกด้าเนินคดีตามกหหมาแ สถาบันฯ ะถแ่อแท้าลาแข้อสอบแลถกรถดาษค้าตอบทั้งหมด หลังะากปรถกาศผลสอบแล้ว 3 เดือน
  • 2. รหัสวิชา 39 คณิตศาสตร์ หน้า 2 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. ค้าชี้แะง แบบทดสอบนี้มีวัตถุประสงค์เพื่อวัดความรู้ความเข้าใจในเนื้อหาวิชาคณิตศาสตร์ โดยจะนาผลที่ได้ไปใช้ประกอบ การพิจารณาคัดเลือกบุคคลเข้าศึกษาในสถาบันอุดมศึกษาในระบบรับตรง ปีการศึกษา 2556 ลักษณถแบบทดสอบ แบบทดสอบฉบับนี้มี 9 หน้า แบ่งเป็น 2 ตอน ตอนที่ 1 แบบระบายตัวเลขที่เป็นคาตอบ จานวน 10 ข้อ ตอนที่ 2 แบบปรนัย 5 ตัวเลือก เลือก 1 คาตอบที่ถูกที่สุด จานวน 20 ข้อ วิธีการตอบ ให้ใช้ดินสอดา 2B ระบายในวงกลมที่เป็นคาตอบในกระดาษคาตอบ เกณฑ์การให้คถแนน (คะแนนเต็ม 100 คะแนน) ตอนที่ 1 ข้อ 1 - 10 ข้อละ 2 คะแนน ตอนที่ 2 ข้อ 11 - 30 ข้อละ 4 คะแนน ข้อปฏิบัติในการสอบ 1. เขียนชื่อ-นามสกุล เลขที่นั่งสอบ สถานที่สอบ และห้องสอบ บนหน้าปกแบบทดสอบ 2. ตรวจสอบชื่อ-นามสกุล เลขที่นั่งสอบ รหัสวิชาที่สอบ เลขประจาตัวประชาชน 13 หลัก ในกระดาษ คาตอบว่าตรงกับตัวผู้สอบหรือไม่ กรณีที่ไม่ตรงให้แจ้งผู้คุมสอบเพื่อขอกระดาษคาตอบสารอง แล้วกรอก / ระบายให้ถูกต้องสมบูรณ์ 3. อ่านคาแนะนาวิธีการตอบข้อสอบให้เข้าใจ แล้วตอบข้อสอบด้วยตนเองและไม่เอื้อให้ผู้อื่นคัดลอกคาตอบได้ 4. เมื่อสอบเสร็จ ให้สอดกระดาษคาตอบไว้ในแบบทดสอบ 5. ไม่อนุญาตให้ผู้เข้าสอบออกจากห้องสอบ ก่อนหมดเวลาสอบ 6. ไม่อนุญาตให้ผู้คุมสอบเปิดอ่านข้อสอบ
  • 3. รหัสวิชา 39 คณิตศาสตร์ หน้า 2 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. ตอนที่ 1 แบบรถบาแตัวเลขที่เป็นค้าตอบ ะ้านวน 10 ข้อ ข้อลถ 2 คถแนน รวม 20 คถแนน 1. จานวนเต็มที่สอดคล้องกับอสมการ ( 1)( 3) 0 (2 1) x x x x     มีทั้งหมดกี่จานวน (ข้อสอบ 7 วิชาสามัญ 56) 2. กาหนดให้ 3 2 ( ) 2 12P x x ax bx    เมื่อ a และ b เป็นจานวนจริง ถ้า 2i เป็นคาตอบของสมการ ( ) 0P x  แล้ว (1)P มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56) 3. กาหนดให้ a และ b เป็นความยาวด้านตรงข้ามมุม A และมุม B ของรูปสามเหลี่ยม ABC ตามลาดับ ถ้า 2 3b a และ ˆˆ 2B A แล้ว cos A มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56) 4. ถ้า 2 3u i j k   และ 2 4v w i j k    แล้วค่าของ  v u w  เท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56) 5. ถ้า , ,x y z สอดคล้องกับระบบสมการ 2 3 3 2 5 5 x y z a x y b x y z c         และ 1 2 3 1 2 3 9 1 3 0 0 1 3 5 2 5 5 0 0 1 2 a b c                     แล้ว c มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56) 6.   7 5log 625 log 343 มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56)
  • 4. รหัสวิชา 39 คณิตศาสตร์ หน้า 3 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. 7. ตารางแจกแจงความถี่สะสมของคะแนนสอบวิชาคณิตศาสตร์ของนักเรียนกลุ่มหนึ่งเป็นดังนี้ คะแนนสอบ ความถี่สะสม (คน) 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 ขึ้นไป 10 35 80 145 185 195 200 ถ้าสุ่มเลือกนักเรียนมาหนึ่งคนจากกลุ่มนี้ ความน่าจะเป็นที่จะได้นักเรียนที่ได้คะแนนสอบในช่วง 50-59 คะแนน เท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56) 8. ต้องการสร้างจานวนที่มี 7 หลัก จากเลขโดด 7 ตัว คือ 1 , 2 , 3 , 3 , 4 , 5 , 6 โดยให้เลข 3 สองตัวอยู่ติดกัน จะสร้างได้ทั้งหมดกี่จานวน (ข้อสอบ 7 วิชาสามัญ 56) 9. ถ้า 3 2 2 2 3 n n n a n n     เมื่อ 1,2,3,n  แล้ว lim n n a  มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56) 10. ค่าสูงสุดสัมบูรณ์ของฟังก์ชัน 3 2 ( ) 3 9 1f x x x x    บนช่วง  1,2 มีค่าเท่ากับเท่าใด (ข้อสอบ 7 วิชาสามัญ 56)
  • 5. รหัสวิชา 39 คณิตศาสตร์ หน้า 4 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. ตอนที่ 2 แบบปรนัแ 5 ตัวเลือก เลือก 1 ค้าตอบที่ถูกที่สุด ะ้านวน 20 ข้อ ข้อลถ 4 คถแนน รวม 80 คถแนน 11. ถ้า S x x เป็นจานวนเต็มที่สอดคล้องกับอสมการ log ( 15) 2x x   แล้วจานวนสมาชิกของเซต S เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 10 2. 12 3. 14 4. 24 5. 26 12. กาหนดให้ a เป็นจานวนเต็มบวก ถ้า ห.ร.ม. ของ a และ 2520 เท่ากับ 60 และ ค.ร.น. ของ a และ 420 เท่ากับ 4620 แล้ว a อยู่ในช่วงในข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. [200,350) 2. [350,500) 3. [500,650) 4. [650,800) 5. [800,950) 13. กาหนดให้ ( )P x เป็นพหุนามดีกรี 4 ซึ่งมีสัมประสิทธิ์เป็นจานวนจริงและสัมประสิทธิ์ของ 4 x เท่ากับ 1 ถ้า 1z และ 2z เป็นรากที่ 2 ของ 2i และเป็นคาตอบของสมการ ( ) 0P x  ด้วย แล้ว (1)P มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 3 2. 5 3. 7 4. 9 5. 10 14. ในระบบพิกัดฉากที่มี O เป็นจุดกาเนิด วงรีรูปหนึ่งมีสมการเป็น 2 2 ( 3) ( 5) 1 9 25 x y    ถ้า 1F และ 2F เป็นจุดโฟกัสของวงรีรูปนี้ โดยที่ 1 2OF OF แล้วระยะทางจากจุด 2F ไปยังเส้นตรงที่ผ่านจุด 1F และ (0,5) เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 19 5 หน่วย 2. 21 5 หน่วย 3. 22 5 หน่วย 4. 23 5 หน่วย 5. 24 5 หน่วย
  • 6. รหัสวิชา 39 คณิตศาสตร์ หน้า 5 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. 15. กาหนดให้ ,A B และ C เป็นจุดในระบบพิกัดฉาก 3 มิติ จงพิจารณาข้อความ 4 ข้อความต่อไปนี้ (ก) 0AB BC CA   (ข) AB BC AB BC  (ค) AB BC CA BA   (ง)    AB BC CA CA AB BC     จานวนข้อความที่ถูกต้องเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 0 (ไม่มีข้อความใดถูกต้อง) 2. 1 3. 2 4. 3 5. 4 16. กาหนดให้  , ,0    ถ้า 2 sin sin 3     และ 2 cos cos 3    แล้ว   มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 6   2. 3   3. 2 3   4. 4 3   5. 5 3   17. ผลบวกของคาตอบทั้งหมดของสมการ  52 5 5 1 x x x     เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 5 2. 5 2  3. 0 4. 5 2 5. 5 18. ผลบวกของคาตอบทั้งหมดของสมการ  4 1 4 2 65 2x x   เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 2 2. 1 2  3. 3 2 4. 2 5. 4
  • 7. รหัสวิชา 39 คณิตศาสตร์ หน้า 6 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. 19. กาหนดระบบสมการ 2 3 3 28 2 12 10 x y z x y z x y z          ถ้า     , , , ,S a b c a b c เป็นคาตอบของระบบสมการที่กาหนด โดยที่ , ,a b c เป็นจานวนเต็ม ซึ่งอยู่ในช่วง  10,10 แล้วจานวนสมาชิกของเซต S เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 13 2. 14 3. 15 4. 16 5. 17 20. นักเรียนห้องหนึ่งมีจานวน 30 คน สอบวิชาคณิตศาสตร์ได้เกรด A 5 คน ได้เกรด B 15 คน และได้เกรด C 10 คน ถ้าสุ่มนักเรียน 3 คนจากห้องนี้แล้ว ความน่าจะเป็นที่จะได้นักเรียน อย่างน้อย 1 คนที่ได้เกรด A เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 44 203 2. 55 203 3. 66 203 4. 77 203 5. 88 203 21. อายุการใช้งานของถ่านไฟฉายชนิดหนึ่งมีการแจกแจงปกติ มีค่าเฉลี่ยเลขคณิตเท่ากับ  นาที และส่วนเบี่ยงเบนมาตรฐานเท่ากับ  นาที ถ้า a เป็นจานวนจริงที่ทาให้ถ่านไฟฉายที่ใช้งานได้ นานระหว่าง a  และ a  นาที มีจานวน 34% แล้วถ่านไฟฉายที่ใช้งานได้นานระหว่าง 2a  และ 2a  นาที มีจานวนคิดเป็นเปอร์เซ็นต์เท่ากับข้อใดต่อไปนี้ เมื่อกาหนดตารางแสดงพื้นที่ใต้เส้นโค้งปกติดังนี้ (ข้อสอบ 7 วิชาสามัญ 56) Z 0.215 0.34 0.44 0.68 0.88 0.99 พื้นที่ 0.085 0.133 0.17 0.25 0.31 0.34 1. 58.5 2. 62 3. 64 4. 68 5. 81
  • 8. รหัสวิชา 39 คณิตศาสตร์ หน้า 7 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. 22. ข้อมูลชุดที่ 1 คือ 1 2 3 9, , , ,x x x x โดยที่ 3 5 i i x   ทุก i ข้อมูลชุดที่ 2 คือ 1 2 3 9, , , ,y y y y โดยที่ iy a j  ทุก j เมื่อ a เป็นจานวนจริงที่ทาให้   9 2 1 i i x a   มีค่าน้อยที่สุด ถ้า b เป็นจานวนจริงที่ทาให้ 9 1 j j y b   มีค่าน้อยที่สุด แล้ว b มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 1 2. 2 3. 3 4. 4 5. 5 23. กาหนดให้ฟังก์ชัน ( )f x เป็นปฏิยานุพันธ์ของ 2 5x  และความชันของเส้นโค้ง ( )y g x ที่จุด  ,x y ใดๆคือ 2 3x ถ้ากราฟของฟังก์ชัน f และ g ตัดกันที่จุด  1,2 แล้ว (1) f g       มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. -5 2. -2 3. 1 4. 2 5. 5 24. กาหนดให้ ( )g x เป็นฟังก์ชันซึ่งมีอนุพันธ์ที่ทุกจุด และ 2 | 1| ; 1 1 ( ) ( ) ; 1 2 2 3 ; 2 x x x f x g x x x x            ถ้า f ต่อเนื่องที่ทุกจุด แล้ว 2 1 ( )g x dx   มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 3 2  2. 1 2  3. 0 4. 1 2 5. 3 2
  • 9. รหัสวิชา 39 คณิตศาสตร์ หน้า 8 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. 25. กาหนดให้  1 3 5 2 1 n n a n       และ 2 4 6 2 n n b n      จะได้ว่าอนุกรม   1 n n n a b    เป็นอนุกรมดังข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. มีผลบวกเท่ากับ 1 2  2. มีผลบวกเท่ากับ 0 3. มีผลบวกเท่ากับ 1 4. มีผลบวกเท่ากับ 1 2 5. ลู่ออก 26. กาหนดให้  3, 2, 1,1,2,3S     และ 1 2 3 4 5 6 0 , 1 6 0 0 i a a a M a a a S i a                 สุ่มหยิบเมทริกซ์จากเซต M มา 1 เมทริกซ์ ความน่าจะเป็นที่จะได้เมทริกซ์ ซึ่งค่าดีเทอร์มิแนนท์ ของเมริกซ์นั้นเท่ากับ 27 หรือ 27 เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 3 2 6 2. 3 4 6 3. 3 6 6 4. 3 8 6 5. 3 10 6 27. ถ้า A และ B เป็นเซตของจานวนเชิงซ้อน โดยที่  1 5 6A z z z     และ  1 7 4B z z z     แล้วจานวนสมาชิกของ A B เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 0 2. 1 3. 2 4. 3 5. มากกว่าหรือเท่ากับ 4 28. กาหนดลาดับซึ่งประกอบด้วยจานวนเต็มบวกทุกจานวนที่หารด้วย 5 ไม่ลงตัว เรียงจากน้อยไปหามาก ถ้าผลบวกของ n พจน์แรกของลาดับนี้เท่ากับ 9000 แล้ว n มีค่าเท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 100 2. 110 3. 120 4. 130 5. 140
  • 10. รหัสวิชา 39 คณิตศาสตร์ หน้า 9 วันเสาร์ที่ 5 มกราคม 2556 เวลา 11.00 – 12.30 น. 29. กาหนดให้  1,2,3,4,5,6A   2 ( ) ( ) , ,B p x p x ax bx c a b c A     สุ่มหยิบ ( )p x มาหนึ่งตัวจากเซต S ความน่าจะเป็นที่จะได้ ( )p x ซึ่ง 1 0 ( )p x dx มีค่าเป็น จานวนเต็ม เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 1 12 2. 2 12 3. 3 12 4. 4 12 5. 5 12 30. กาหนดให้กราฟของ อนุพันธ์ของฟังก์ชัน f เป็นดังรูป นักเรียนคนหนึ่งได้สรุปว่า f ต้องเป็นดังข้อความต่อไปนี้ (ก) f(x) = - x เมื่อ 2 3x  (ข) f เป็นฟังก์ชันลด เมื่อ 0 2x  (ค) f มีจุดต่าสุดสัมพัทธ์ที่จุด 4x  (ง) f มีจุดสูงสุดสัมพัทธ์ที่จุด 1x  จานวนข้อความที่นักเรียนคนนี้สรุปได้อย่างถูกต้อง เท่ากับข้อใดต่อไปนี้ (ข้อสอบ 7 วิชาสามัญ 56) 1. 0 (ไม่มีข้อความใดถูก) 2. 1 3. 2 4. 3 5. 4      Y X 1 2 3 4 5 6 1 -1  เมื่อ y = f (x)
  • 11. เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 2 http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น หลักในการแก้อสมการพหุนาม 1. ทาให้ข้างใดข้างหนึ่งเป็น 0 2. ทาให้สัมประสิทธิ์ของตัวแปรที่มีกาลังมากสุดเป็น  3. แยกตัวประกอบ 4. เขียนเส้นจานวน ** ระวัง ค่า x ที่ทาให้ส่วนเป็น 0 ต้องเป็นช่วงเปิด เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 ตอนที่ 1 แบบระบายตัวเลขที่เป็นคาตอบ จานวน 10 ข้อ ข้อละ 2 คะแนน รวม 20 คะแนน 1. ตอบ 4 จากอสมการ ( 1)( 3) 0 (2 1) x x x x     สามารถเขียนเส้นจานวนได้ดังรูป ดังนั้นจานวนเต็มที่สอดคล้องกับอสมการดังกล่าวมี 4 จานวนคือ -1 , 1 , 2 , 3 นั่นเอง 2. ตอบ 25 จากที่เรารู้ว่า 2i เป็นคาตอบของสมการ ( ) 0P x   2i จะเป็นคาตอบของสมการ ( ) 0P x  ด้วย เนื่องจาก ( )P x เป็นพหุนามกาลัง 3 ดังนั้นจะต้อง มีคาตอบของสมการ ( ) 0P x  อีกคาตอบหนึ่งด้วย สมมติให้ตัวประกอบอีกตัวหนึ่งคือ mx n นั่นคือ ( ) ( 2 )( 2 )( )P x x i x i mx n    ดังนั้น 3 2 2 2 2 ( ) 2 12 ( 4 )( ) ( 4)( )P x x ax bx x i mx n x mx n           เมื่อเทียบสัมประสิทธิ์ของ 3 x เลยทาให้เราได้ว่า 2m   เมื่อเทียบสัมประสิทธิ์ของพจน์ค่าคงที่พจน์สุดท้าย เลยทาให้เราได้ว่า 3n  สรุป : 2 ( ) ( 2 )( 2 )(2 3) ( 4)(2 3)P x x i x i x x x       ดังนั้น (1) (1 4)(2 3) 25P     ทฤษฎีที่เกี่ยวกับรากของสมการพหุนาม กาหนดให้ เป็นพหุนามที่มีสัมประสิทธิ์ เป็นจานวนเต็ม หากเรารู้ว่าจานวนเชิงซ้อน เป็น คาตอบของสมการ แล้ว เราจะได้ว่า จะเป็นคาตอบของสมการ ด้วย ^^ -1 0 3-  
  • 12. เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 3 http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น ความสัมพันธ์ระหว่างการ dot และการ cross สาหรับเวกเตอร์ ใดๆ เราจะได้ว่า (นั่นคือ เวกเตอร์สามารถเลื่อนไปทางขวาได้ 1 ตาแหน่ง ทั้ง 3 เวกเตอร์ในทางเดียวกันในทานองว่าเป็น loop โดยที่เครื่องหมาย  และเครื่องหมาย  ยังต้องอยู่ที่เดิม) 3. ตอบ 0.75 จาก 2 3b a จะได้ว่า 3 2 b a จากกฎของไซน์ sin sinA B a b  จะได้ว่า 3 2 sin sin 2A A a a  นั่นคือ 3 2 sin 2 sin A A  แต่จาก sin2 2sin cosA A A ดังนั้น 3 sin 2sin cos 2 A A A นั่นคือ 3 cos 0.75 4 A   นั่นเอง 4. ตอบ 8 จาก    v u w w v u     จะได้ว่า    v u w v w u         2 4 2 3i j k i j k       ( 1)(2) ( 2)(1) ( 4)( 3)       8 หมายเหตุ 1. สาหรับเวกเตอร์ u และ v ใดๆ เราจะได้ว่า u v v u    2. ถ้า u ai b j ck   และ v di e j f k   จะได้ว่า u v ad be cf    ความรู้เพิ่มเติม 1 : ความรู้พื้นฐานเกี่ยวกับการดาเนินการตามแถว การดาเนินการตามแถว (Row Operation) คือกระบวนการที่เราจะปรับรูปแบบของเมทริกซ์เพื่อให้ได้ เมทริกซ์ใหม่ที่สะดวกต่อการคานวณมากขึ้น มีอยู่ด้วยกัน 3 ลักษณะคือ 1. คูณแถวที่ i ด้วยค่าคงที่ k (เมื่อ 0k  ) เขียนแทนด้วยสัญลักษณ์ ikR 2. สลับแถวที่ i กับแถวที่ j เขียนแทนด้วยสัญลักษณ์ ijR 3. คูณแถวที่ i ด้วยค่าคงที่ k (เมื่อ 0k  ) แล้วนาไปบวกกับแถวที่ j (แถวที่ j จะเปลี่ยนแปลง) เขียนแทนด้วยสัญลักษณ์ i jkR R โดยเราจะใช้เครื่องหมาย ~ แทนการดาเนินการตามแถวในแต่ละขั้นตอน และเขียนกากับไว้ทุกขั้นตอน กฎของไซน์สาหรับสามเหลี่ยมทั่วไป สามเหลี่ยม ABC ที่มี ความยาวด้านตรงข้าม มุม A , B, C คือ a , b ,c ตามลาดับ เราจะได้ว่า กฎของไซน์ คือ หมายเหตุ : นะครับ :)) A B Ca bc
  • 13. เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 4 http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น เช่น กาหนดให้ 1 4 2 2 1 0 0 3 4 A           ถ้าเมทริกซ์ ~A B โดยการดาเนินการ 32R จะได้ว่า 3 1 4 2 2 1 0 0 6 8 2 B R             ถ้าเมทริกซ์ ~B C โดยการดาเนินการ 1 22R R จะได้ว่า 1 2 1 4 2 4 7 4 2 0 6 8 C R R             ถ้าเมทริกซ์ ~C D โดยการดาเนินการ 23R จะได้ว่า 23 1 4 2 0 6 8 4 7 4 D R           ความรู้เพิ่มเติม 2 : การแก้ระบบสมการกับการดาเนินการตามแถว จากระบบสมการ 11 12 13 21 22 23 31 32 33 a x a y a z a x a y a z a x a y a z          1 2 3 b b b เราสามารถเขียนเป็นเมทริกซ์แต่งเติม (Augmented Matrix) ได้เป็น 11 12 13 1 21 22 23 2 31 32 33 3 a a a a a a a a a         b b b ซึ่งไม่ว่าเราจะใช้การดาเนินการตามแถวทั้ง 3 แบบที่ได้กล่าวมาแล้วข้างต้น กับเมทริกซ์แต่งเติมนี้ อย่างไรก็ตาม เราจะได้ว่า คาตอบของระบบสมการจะไม่เปลี่ยนแปลง 5. ตอบ 17 จากระบบอสมการที่โจทย์กาหนดให้ 2 3 3 2 5 5 x y z a x y b x y z c         เขียนเป็นเมทริกซ์ได้เป็น 1 2 3 1 3 0 2 5 5 a b c         แต่โจทย์กาหนดให้ 1 2 3 1 2 3 9 1 3 0 ~ 0 1 3 5 2 5 5 0 0 1 2 a b c                    แสดงว่าระบบสมการจะไม่เปลี่ยนไป ซึ่งจาก 1 2 3 9 0 1 3 5 0 0 1 2          จะทาให้เราได้ว่า 2z  , 3 5y z  และ 2 3 9x y z   นั่นคือ 1x  , 1y   และ 2z  ซึ่งจากโจทย์จะได้ว่า 2 5 5 2(1) 5( 1) 5(2) 17c x y z       
  • 14. เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 5 http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น 6. ตอบ 12   7 5log 625 log 343 log625 log343 log7 log5   4 3 log5 log7 log7 log5   4log5 3log7 12 log7 log5    7. ตอบ 0.20 จากตารางที่กาหนดให้ ต้องหาความถี่ จากความถี่สะสมก่อน ดังตาราง ดังนั้นนักเรียนทั้งหมดมี 200 คน และมีนักเรียนที่สอบได้คะแนนในช่วง 50-59 คะแนนทั้งหมด 40 คน ดังนั้น เมื่อสุ่มนักเรียนมา 1 คน ความน่าจะเป็นที่จะได้นักเรียนที่ได้ คะแนนสอบในช่วง 50-59 คะแนน เท่ากับ 40 0.20 200  8. ตอบ 720 โจทย์กาหนดให้เลข 3 ทั้งสองตัวต้องอยู่ติดกัน เราจึงต้องมัดเลข 3 ทั้ง 2 ตัวไว้ด้วยกัน ดังนี้ 1 , 2 , 3,3 , 4 , 5 , 6 ดังนั้นการสร้างจานวนที่มี 7 หลัก จากเลขโดด 7 ตัว ดังกล่าว ก็คือการสลับของที่แตกต่างกัน ทั้งหมด 6 ชิ้นนั้นเอง ซึ่งสามารถทาได้ 6! 720 วิธี นั่นเอง คะแนนสอบ ความถี่สะสม (คน) ความถี่ 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 ขึ้นไป 10 35 80 145 185 195 200 10 25 45 65 40 10 5 สมบัติของ log สาหรับข้อนี้ กาหนดให้ และ เป็นจานวนจริงใดๆ 1. เมื่อ คือฐาน log ใหม่ที่ต้องการ 2. หลักการพื้นฐานของการเรียงของติดกัน หากเราต้องการให้สิ่งของใดอยู่ติดกัน ให้มัดรวมของเหล่านั้น อยู่ด้วยกัน แล้วนับว่าเป็นของเพียง 1 ชิ้น และอย่าลืมคิด ด้วยว่า ของที่เรามัดอยู่ติดกันนั้นสามารถสลับตาแหน่งกัน ได้ด้วย ยกเว้น!!! ของที่เรามัดติดกันนั้นมันเหมือนกัน เพราะของเหมือนกันสลับที่กันไม่ทาให้เกิดวิธีใหม่นะครับ^^
  • 15. เฉลยข้อสอบ 7 วิชาสามัญ ปีการศึกษา 2556 จากกลุ่มคณิตมัธยมปลาย หน้า 6 http://www.facebook.com/groups/HighSchoolMath/ เพื่อการศึกษาเท่านั้น และไม่เกี่ยวข้องกับเชิงธุรกิจใดๆทั้งสิ้น 9. ตอบ 3 3 2 2 lim lim 2 3 n n n n n a n n          3 2 2 2 ( 3) ( 2) lim ( 2)( 3)n n n n n n n           4 3 4 2 3 2 3 2 lim 3 2 6n n n n n n n n            3 2 3 2 3 2 lim 3 2 6n n n n n n          2 3 2 3 lim 3 2 6 1 n n n n n               3 10. ตอบ 12 จาก 3 2 ( ) 3 9 1f x x x x    จะได้ว่า 2 ( ) 3 6 9f x x x    ให้ ( ) 0f x  เพื่อหาค่าวิกฤต จะได้ว่า 2 3( 2 3) 0x x   นั่นคือ ( 3)( 1) 0x x    3x   หรือ 1x  แต่ต้องระวัง  เพราะข้อนี้โจทย์ กาหนดให้เราพิจารณาในช่วง  1,2 ดังนั้นค่าวิกฤตจึงคิดเฉพาะ 1x  เพราะว่า (1) 4f   , ( 1) 12f   และ (2) 3f  ดังนั้น ค่าสูงสุดสัมบูรณ์ของฟังก์ชัน 3 2 ( ) 3 9 1f x x x x    บนช่วง  1,2 มีค่าเท่ากับ 12 หลักการพื้นฐานของการหาลิมิตของลาดับ ให้ดูดีกรีที่มากที่สุดของเศษและส่วน 1. ถ้า เศษ < ส่วน : ลิมิตจะตอบ 0 เช่น 2. ถ้า เศษ > ส่วน : ลิมิตจะตอบไม่มีค่า(เป็นจานวนจริง) เช่น ไม่มีค่า 3. ถ้า เศษ = ส่วน : ลิมิตจะตอบค่าส.ป.ส. เศษ  ส่วน เช่น หมายเหตุ : ถ้าเป็น ไม่มีค่า  ไม่มีค่า จะยังสรุปไม่ได้ ต้องจัดรูปใหม่ก่อนเสมอ แล้วจึงหาค่าของลิมิตใหม่อีกครั้ง หลักการพื้นฐานของการหาสุดขีดสัมบูรณ์ ในการหาค่าสุดขีดสัมบูรณ์ของ บนช่วง ขั้นที่ 1 : หาค่าวิกฤตทั้งหมดของฟังก์ชัน โดยหา ได้จาก แต่จะพิจารณาเฉพาะ ค่าวิกฤตที่อยู่ในช่วง เท่านั้นนะครับ ขั้นที่ 2 : หาค่าของฟังก์ชันที่ตาแหน่งค่าวิกฤต ขั้นที่ 3 : หาค่าของฟังก์ชันที่ตาแหน่ง และ ขั้นที่ 4 : เปรียบเทียบค่าที่ได้จากขั้นที่ 2 และขั้นที่ 3 ค่าที่มากที่สุด = ค่าสูงสุดสัมบูรณ์ ค่าที่น้อยที่สุด = ค่าต่าสุดสัมบูรณ์