The document discusses metabolic acidosis, defining it as a primary decrease in bicarbonate with a compensatory decrease in PCO2. It notes the causes can include GI or renal bicarbonate loss, lactic acidosis, ketoacidosis from diabetes or alcohol, intoxication from ethylene glycol or methanol, and advanced renal failure. Metabolic acidosis is classified as having a normal or high anion gap, with high anion gap causes including ketoacidosis, lactic acidosis, and certain intoxications.
4. Definitions
Acid: a substance that may donate protons
(hydrogen ions)
Base: a substance that may receive protons
pH: the negative logarithm of protons
concentration
Strong acids vs. weak acids
Volatile (Co2) vs. nonvolatile acids
Buffers
14. ACID-BASE DISORDERS
DEFINITIONS
ACIDEMIA VS ALKALEMIA
ACIDOSIS VS ALKALOSIS
RESPIRATORY VS METABOLIC
COMPENSATORY RESPONSES
SIMPLE (SINGLE) VS MIXED
16. APPROACH TO THE DIAGNOSIS
OF ACID-BASE DISORDERS
Suspicious clinical or lab findings
Identify the major Acid-base disorder
Determine if it is simple or mixed
Establish the cause of the disorder
Direct treatment to the underlying cause unless
the pH is in a dangerous range
(7.10 < or > 7.60)
21. FREQUENCY OF SIMPLE ACID-
BASE DISORDERS
Metabolic
Acidosis 10%
Alkalosis 40%
Respiratory
Acidosis 20%
Alkalosis 20%
22. Consequences of acidosis vs. alkalosis
Impaired cardiac
contractility
Arteriolar dilation
Venoconstriction
Centralization of blood
volume
Increased pulmonary Arteriolar constriction
vascular resistance Reduced coronary blood flow
Cardiovascular Decreased cardiac output Reduced anginal threshold
Decreased systemic BP Decreased threshold for
Decreased hepatorenal cardiac arrhythmias
blood flow
Decreased threshold for
cardiac arrhythmias
Attenuation of
responsiveness to
catecholamines
23. Insulin resistance Stimulation of anaerobic
Inhibition of anaerobic glycolysis
glycolysis Formation of organic acids
Reduction in ATP Decreased oxyhemoglobin
Metabolic synthesis dissociation
Hyperkalemia Decreased ionized Ca
Protein degradation Hypokalemia
Bone demineralization Hypomagnesemia
(chronic) Hypophosphatemia
Tetany
Inhibition of metabolism
Seizures
and cell-volume
Neurologic Lethargy
regulation
Delirium
Obtundation and coma
Stupor
Compensatory
Compensatory
hyperventilation with
Respiratory hypoventilation with
possible respiratory
hypercapnia and hypoxemia
muscle fatigue
24. RESPONSE TO SIMPLE
ACID-BASE DISORDERS
Disturbance Equation Interval Level
Met. Ac. 1 = 1.2 12-24 hr 10
Met. Al. 1 = 0.7 24-36 hr 55
Ac. Resp. Ac. 1 = 0.1 5-10 min 43
Ch. Resp. Ac. 1 = 0.3 72-120 hr 45
Ac. Resp. Al. 1 = 0.2 5-10 min 18
Ch. Resp. Al. 1 = 0.4 48-72 hr 13
29. Or
In metabolic disorders add 15 to HCO3:
Example: if HCO3=10 + 15 = 25 then the PCO2
should be 25, and the last two digits of pH 25
pH=7.25
HCO3=10
PCO2=25
30. Normal Anion Gap
AG = Na (HCO3+Cl) = 8-12
A-10
HCO3- PaCO2 40
25 pH 7.40
Na
140 CL
105
31. METABOLIC ACIDOSIS
AG = 10 AG = 10
AG = 25
HCO3 =15
HCO3 =25
HCO3 =10
- HCO3 - HCO3
CL- =115
+ CL- CL- =105 + A- CL- =105
HYPERCHLOREMIC NORMAL HIGH AG
33. THE SERUM ANION GAP
AG = Na+ - (HCO3- + CL-), NL = 10 賊 2
AG 27 INDICATE ORGANIC MET. AC.
AG + HCO3 42 INDICATE MET. AL.
AG DECREASED WITH PARAPROTEIN
AG DECREASED WITH LOW ALBUMIN
34. Increased anion gap
metabolic acidosis
ketones, lactate, sulfates, or metabolites of methanol,
ethylene glycol, and salicylate
hyperalbuminemia and uremia (increased
anions)
hypocalcemia or hypomagnesemia (decreased
cations)
35. The effect of low albumin can be
accounted for by adjusting the
normal range for the anion gap
2.5 mEq/L for every 1 g/dL fall in
albumin.
37. ACID-BASE DISORDERS
EXAMPLE OF A SIMPLE DISORDER
pH (7.55) = C * [HCO3-] (18 mmol/L)
PCO2 (21 mm Hg)
Step 1: pH , indicates alkalemia (Met. or Resp)
Step 2: HCO3- , indicates Resp. Alkalosis
Step 3: PCO2 , confirms Resp. Alkalosis
38. The delta gap
The difference between the patient's anion gap
and the normal anion gap is termed the delta gap
considered an HCO3 equivalent, because for
every unit Rise in the anion gap, the
HCO3 should lower by 1
The delta gap is added to the measured HCO3 , the
result should be in the normal range for HCO3 ;
elevation indicates the additional presence of a
metabolic alkalosis
39. ACID-BASE DISORDERS
EXAMPLE OF A MIXED DISORDER
pH (7.55) = C * [HCO3-] (30 mmol/L)
PCO2 (35 mm Hg)
Step 1: Alkalemia
Step 2: HCO3- , indicates Met. alkalosis
Step 3: PCO2 , indicates Resp. alkalosis
Step 4: HCO3- (25%) > PCO2 (12.5%)
Step 5: The major disorder is metabolic alkalosis
43. MIXED ACID-BASE DISORDERS
EXAMPLE OF TRIPLE DISORDER
Health NG + Sepsis + Endotox.
pH 7.40 7.49 7.14 7.44
PCO2 40 44 24 12
HCO3 24 32 8 8
AG 9 11 33 35
AG 0 2 24 26
44. Masked disorder
A vomiting, ill-appearing diabetic patient has
laboratory results showing:
Na, 137; K, 3.8; Cl, 90; HCO3 , 22;
pH, 7.40; Pco2, 41; Po2, 85
anion gap = 137 (90 + 22) = 25 (normal :10)
Respiratory compensation is evaluated by Winter's formula
Predicted Pco2 = 1.5 (22) + 8 賊 2 = 41 賊 2
delta gap = 15 + 22 = 37
46. Normal ABG?
A diabetic patient presented with gastroentritis
found to have:
pH: 7.4
HCO3: 24
PCO2: 40
Na: 144, K: 4, CL: 95, TCO2: 24, RBS: 520,
Positive test for ketons
What is the acid-base status of this patient?
48. METABOLIC ACIDOSIS
P R IM A R Y : D E C R E A S D H C O 3
RESPO NSE: D EC RESED PC O 2
C AU SES
NO RM A L A G H IG H A G
1 0 m E q /L > 1 5 m E q /L
G I HC O 3 LO SS K E T O A C ID O S ID
RENA L HC O 3 LO SS L A C T IC A C ID O S IS
H Y P O A L D O S T E R O N IS M R E N A L F A IL U R E
TPN IN T O X IC A T IO N
52. METABOLIC ACIDOSIS
INTOXICATION:
HIGH OSMOLAR GAP
ETHYLENE GLYCOL
METHANOL
SALICYLATE
RESPIRATORY ALKALOSIS
METABOLIC ACIDOSIS
MIXED
53. METABOLIC ACIDOSIS
KETOACIDOSIS
Diabetes 1 (Insulin lack) leads to fatty acids
oxidation and production of acetoacetate (2) and
B-OH-butyrate (5), which is buffered by HCO 3-,
causing high AG
ETOH (altered cell metabolism)
Starvation (use of fatty acids), usually mild
54. METABOLIC ACIDOSIS
LACTIC ACIDOSIS (Dx by exclusion)
Type A: O2 delivery to cells is inadequate
Shock, mesenteric vascular events, and pulmonary
edema)
Type B: Cells cannot use O2
Hepatic failure, sepsis, acute pancreatitis
Anaerobic glycolysis of glucose to pyruvate and
then lactate (buffered by HCO3-)
55. METABOLIC ACIDOSIS
RENAL FAILURE:
Unable to excrete the daily acid load
Bone buffers keep HCO3-> 15 in CRF
In ARF HCO3- falls by 0.5 mmol/L/day
Retention of sulfate, phosphate, and organic
anions causes the increase in AG
56. METABOLIC ACIDOSIS
NORMAL ANION GAP
GI HCO3- LOSS (Diarrhea, fistula)
RENAL HCO3- LOSS
RTA (Proximal, Distal, Hyperkalemic)
Acetazolamide, hypoaldostironism
Miscellaneous
NH4Cl ingestion, Sulfur ingestion
Pronounced dilution
58. METABOLIC ACIDOSIS
GI. BICARBONATE LOSS
NORMAL AG, HYPERCHLOREMIC
CAUSES
DIARRHEA
EXTERNAL FISTULA
URETEROSIGMOIDOSTOMY OR ILEAL LOOP
CONDUIT
59. METABOLIC ACIDOSIS
RENAL BICARBONATE LOSS
TYPE I RTA (DISTAL, CLASSICAL)
PROTON SECRETION DEFECT
TYPE II RTA (PROXIMAL, FANCONOI)
BICARBONATE REABSORPTION DEFECT
TYPE IV RTA (HYPERKALEMIC)
HYPORENINEMIC HYPOALDOSTERONISM
64. METABOLIC ACIDOSIS
URINARY ANION GAP
UAG = (Na+ + K+) - Cl-
UAG is an estimate of urinary ammonium
Elevated in GI HCO3- loss
Low in distal RTA
UAG: NEGATIVE -20 mEq/L IN GI LOSS
UAG: POSITIVE + 23 mEq/L IN RTA
66. CAUSES OF DISTAL RTA
Primary
Hypercalcemia and nephrocalcinosis
Multiple myeloma
Cirrhosis
SLE
Amphotericin B
Lithium
Transplant rejection
Medullary sponge kidney
67. CAUSES OF
HYPERKALEMIC RTA
Hypoaldosteronism
Obstructive nephropathy
Sickle cell nephropathy
SLE
Cyclosporine A nephropathy
68. CAUSES OF PROXIMAL RTA
Primary
Cystinosis
Wilsons disease
Lead toxicity
Multiple myeloma
Nephrotic syndrome
Early transplant rejection
Medullary cystic disease
Outdated tetracycline
69. METABOLIC ALKALOSIS
P r im a r y : IN C R E A S E D H C O 3
R E S P O N S E : IN C R E A S E D P C O 2
A p p r o p r ia te r e s p o n s e ?
P C O 2 = 0 .7 H C O 3
U R IN A R Y C H L O R ID E
< 2 0 m E q /L > 2 0 m E q /L
N o rm a l E C V D e c re a s e d E C V N o rm a l E C V D e c re a s e d E C V
A lk a li lo a d G I lo s s E xcess B a r tte r 's
D iu r e tic s M in e r a lo c o r tic o id s H y p o k a le m ia
79. RESPIRATORY ACIDOSIS
P r i m a r y : IN C R E A S E D P C O 2
R E S P O N S E : IN C R E A S E D H C O 3
A p p ro p ria te re s p o n s e ?
A c u te : H C O 3 (1 ) = P C O 2 (1 0 )
C h ro n ic : H C O 3 (3 ) = P C O 2 (1 0 )
CAUSES
P u lm o n a ry N e u ro m u s c u la r
P n e u m o th o ra x COPD C N S d e p re s s a n t P rim a ry h y p o v e n tila tio n
P n e u m o n ia P u lm o n a ry fib ro s is B ra in s te m le s io n s P o lio m y e litis
P u lm o n a r y e m b o lu s S p in a l c o rd le s io n s
P u lm o n a r y e d e m a
81. RESPIRATORY ALKALOSIS
P rim a ry : D E C R E A S E D P C O 2
RESPONSE: DECREASED HCO3
A p p ro p ria te re s p o n s e ?
A c u te : H C O 3 (2 ) = P C O 2 (1 0 )
C h ro n ic : H C O 3 (4 ) = P C O 2 (1 0 )
CAUSES
P E R IP H E R A L CENTRAL
ACUTE C H R O N IC ACUTE C H R O N IC
P n e u m o n ia P u lm o n a ry fib ro s is S a lic y la te o v e rd o s e B ra in tu m o r
P u lm o n a ry e m b o lu s CHF P a in P re g n a n c y
S e p s is C irrh o s is A n x ie ty P a in