ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
EJERCICIOS DE ALGEBRA DE BOOLE 
1- F= X¡¯Y¡¯Z¡¯ + X¡¯Y¡¯Z + X¡¯YZ¡¯+ XY¡¯Z¡¯ + XYZ¡¯ + XYZ 
X¡¯Y¡¯(Z¡¯ +Z) + XY(Z¡¯+Z) + Z(X¡¯Y+XY¡¯) 
X¡¯Y¡¯ + XY +Z(X¡¯Y+XY¡¯) 
2- F = ABC + A¡¯B¡¯C¡¯ + A¡¯B¡¯C + A¡¯BC + AB¡¯C¡¯ + AB¡¯C 
A¡¯B¡¯(C¡¯+C) + BC(A¡¯+A) + AB¡¯(C¡¯+C) 
A¡¯B¡¯ + BC + AB¡¯ 
B¡¯(A¡¯+A) + BC 
B¡¯ + BC 
3- F= (A+B )(A¡¯+C)C 
[AA¡¯ + AC + B A¡¯ + BC+.C 
ACC + A¡¯BC + BCC 
AC + A¡¯BC + BC 
AC + BC(A¡¯ + 1) 
AC + BC 
C(A +B) 
4- F = Y(X+Y¡¯) + (X¡¯ + Z) 
Y*X.X¡¯ + XZ + Y¡¯X¡¯ + Y¡¯Z+ 
X¡¯XY + XYZ + X¡¯Y¡¯Y + Y¡¯YZ 
XYZ 
5- F = X¡¯(X+Y) + Z¡¯ + ZY 
X¡¯X + X¡¯Y + Z¡¯ +ZY 
X¡¯Y + Z¡¯+ ZY 
Y(X¡¯ + Z) + Z¡¯ 
6- F = A¡¯B¡¯ + A¡¯B + AB¡¯ +AB 
B¡¯(A¡¯ + A) + B(A¡¯ + A) 
(B¡¯ + B) 
1
7- F = (W + X¡¯W + YZ)¡¯ 
W¡¯.X.W¡¯. Y¡¯.Z¡¯ 
X.W¡¯.Y¡¯.Z¡¯ 
8- F = W*(X +Y ) (Z + W¡¯)+¡¯ 
W¡¯ + (X +y)¡¯ + (Z+W¡¯)¡¯ 
APLICANDO D¡¯MORGAN AL 2DO TERMINO 
(X+Y)¡¯ = X¡¯.Y¡¯ 
APLICANDO D¡¯MORGAN AL 3ER TERMINO 
(Z + W¡¯)¡¯ = Z¡¯.W 
ENTOCES UNIENDO 
W¡¯ + X¡¯.Y¡¯ + Z¡¯.W 
W¡¯(1 + Z¡¯) + X¡¯Y¡¯ 
W¡¯ +X¡¯Y¡¯

More Related Content

Adbequipo6

  • 1. EJERCICIOS DE ALGEBRA DE BOOLE 1- F= X¡¯Y¡¯Z¡¯ + X¡¯Y¡¯Z + X¡¯YZ¡¯+ XY¡¯Z¡¯ + XYZ¡¯ + XYZ X¡¯Y¡¯(Z¡¯ +Z) + XY(Z¡¯+Z) + Z(X¡¯Y+XY¡¯) X¡¯Y¡¯ + XY +Z(X¡¯Y+XY¡¯) 2- F = ABC + A¡¯B¡¯C¡¯ + A¡¯B¡¯C + A¡¯BC + AB¡¯C¡¯ + AB¡¯C A¡¯B¡¯(C¡¯+C) + BC(A¡¯+A) + AB¡¯(C¡¯+C) A¡¯B¡¯ + BC + AB¡¯ B¡¯(A¡¯+A) + BC B¡¯ + BC 3- F= (A+B )(A¡¯+C)C [AA¡¯ + AC + B A¡¯ + BC+.C ACC + A¡¯BC + BCC AC + A¡¯BC + BC AC + BC(A¡¯ + 1) AC + BC C(A +B) 4- F = Y(X+Y¡¯) + (X¡¯ + Z) Y*X.X¡¯ + XZ + Y¡¯X¡¯ + Y¡¯Z+ X¡¯XY + XYZ + X¡¯Y¡¯Y + Y¡¯YZ XYZ 5- F = X¡¯(X+Y) + Z¡¯ + ZY X¡¯X + X¡¯Y + Z¡¯ +ZY X¡¯Y + Z¡¯+ ZY Y(X¡¯ + Z) + Z¡¯ 6- F = A¡¯B¡¯ + A¡¯B + AB¡¯ +AB B¡¯(A¡¯ + A) + B(A¡¯ + A) (B¡¯ + B) 1
  • 2. 7- F = (W + X¡¯W + YZ)¡¯ W¡¯.X.W¡¯. Y¡¯.Z¡¯ X.W¡¯.Y¡¯.Z¡¯ 8- F = W*(X +Y ) (Z + W¡¯)+¡¯ W¡¯ + (X +y)¡¯ + (Z+W¡¯)¡¯ APLICANDO D¡¯MORGAN AL 2DO TERMINO (X+Y)¡¯ = X¡¯.Y¡¯ APLICANDO D¡¯MORGAN AL 3ER TERMINO (Z + W¡¯)¡¯ = Z¡¯.W ENTOCES UNIENDO W¡¯ + X¡¯.Y¡¯ + Z¡¯.W W¡¯(1 + Z¡¯) + X¡¯Y¡¯ W¡¯ +X¡¯Y¡¯