ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
Solution 9 ¨C Disturbance Rejection and Integral Control
Solution for Problem 9.1 ¨C Disturbance models
a) The ?rst signal is a piecewise exponential function. The tangent at the initial point, say
t = t0, crosses the axis (which also marks the ?nal value of the function) at t = T. Hence,
the exponential function decays with ? 1
T
. We assume that at each instant ti, the initial
value z(ti) of z is reset. Thus, the disturbance can be represented by
z(t) = e? t
T z(ti).
Then, for each interval of the disturbance, Di?erentiating z gives
¨Bz(t) = ?
1
T
e? t
T z(ti)
= ?
1
T
z(t).
Choosing w(t) = z(t), the disturbance model reads
¨Bw = ?
1
T
w
z = w.
b) Here, z is a piecewise constant disturbance which can be denoted by z(ti). For every time
interval between two jumps, say t ¡Ê [ti, ti+1),
¨Bz(t) = 0.
By de?ning w(t) = z(t), the disturbance model reads
¨Bw = 0
z = w.
c) In the last case, z is a piecewise harmonic oscillations disturbance, which features a
constant angular frequency ¦Ø = 2¦Ð
T
, and di?erent phases ?i and amplitude Ai in various
segments. Additionally, it has a constant o?set z(ti). Combining the oscillation and the
o?set yields
z(t) = zsin(t) + zconst(t)
= Ai sin
2¦Ð
T
t + ?i + z(ti).
Dr.-Ing. Nicole Gehring 1
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
Di?erentiating z twice gives
¨Bz(t) =
2¦Ð
T
Ai cos
2¦Ð
T
t + ?i + z(ti)
¡§z(t) = ?
2¦Ð
T
2
Ai sin
2¦Ð
T
t + ?i + z(ti)
= ?¦Ø2
zsin(t).
Thus, with the de?nition
w =
?
?
?
w1
w2
w3
?
?
? =
?
?
?
zsin
¨Bzsin
zconst
?
?
? ,
the disturbance model can be expressed in terms of
¨Bw =
?
?
?
0 1 0
?¦Ø2
0 0
0 0 0
?
?
? w
z = 1 0 1 w.
Solution for Problem 9.2 ¨C Disturbance feedback
a) Since the block diagram of the system is given in the frequency domain, the relationship
between the states can be written as follows:
X1(s)
X2(s) + Z(s)
=
2
s + 2
t d ¨Bx1(t) = ?2x1(t) + 2x2(t) + 2z(t)
X2(s)
U(s)
=
1
s + 1
t d ¨Bx2(t) = ?x2(t) + u(t),
which in state representation is equivalent to
¨Bx1
¨Bx2
=
?2 2
0 ?1
x1
x2
+
0
1
u +
2
0
z
y = 1 0
x1
x2
.
b) For this question, the feedback vector r , and the gains nx, nu, mx and mu are going to
be designed one by one. Due to the superposition principle, this is always possible.
Dr.-Ing. Nicole Gehring 2
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
i) Feedback matrix r
From the state representation we know that the system is characterized by the
following matrices
A =
?2 2
0 ?1
, b =
0
1
, e =
2
0
, c = 1 0 ,
while we assume the feedback matrix to have the form
r = r1 r2 .
With all of the eigenvalues at ?5, the desired characteristic polynomial is given by
(s + 5)2
= s2
+ 10
p1
s + 25
p0
.
The characteristic polynomial of the closed-loop system is calculated as follows:
det sI ? A + br = det
s + 2 ?2
0 s + 1
+
0 0
r1 r2
=
s + 2 ?2
r1 s + r2 + 1
= s2
+ (r2 + 3)
¦Á1
s + 2r1 + 2r2 + 2
¦Á0
Applying the coe?cient matching method
s2
+ (r2 + 3)
¦Á1
s + 2r1 + 2r2 + 2
¦Á0
!
= s2
+ 10
p1
s + 25
p0
,
we obtain
r2 + 3
!
= 10
2r1 + 2r2 + 2
!
= 25.
Thus,
r1 = 7
r2 = 4.5,
i.e. the state feedback vector is
r = 7 4.5 .
Dr.-Ing. Nicole Gehring 3
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
ii) Gains nx, nu
The goal is to design nx and nu such that the eigenvalue of the disturbance model
are rendered unobservable. According to the Hautus Criterion (for observability),
the goal is equivalent to to the matrix
H(¦Ëi) =
?
?
?
?
?
A ? br ? ¦ËiI eZ + b(nu + r nx)
0 W ? ¦ËiI
c 0
?I nx
?
?
?
?
?
being rank de?cient for ¦Ëi which is an eigenvalue of W . Hence
H(¦Ëi)
vx,i
vw,i
= 0. (1)
Given a (piecewise) constant disturbance, the disturbance model
¨Bw = 0
z = w
is characterized by scalars
W = 0
Z = 1.
Apparently, the eigenvalues of W is ¦Ë = 0, whose eigenvector can be computed from
(W ? ¦Ë)vw = 0.
The result of which is chosen as
vw = 1.
The last row of (1) gives the relationship between vx and vw:
vx = nxvw. (2)
Then, introducing the shortcut
q = nuvw, (3)
and substituting (2) and (3) into the ?rst equation in (1), we obtain
(A ? ¦Ë) vx + bqi = ?eZvw.
This can further be combined with the third equation in (1) and gives
A ? ¦ËI b
c 0
P (¦Ë)
vx
q
=
?eZvw
0
?
?
?
?
?2 2 0
0 ?1 1
1 0 0
?
?
?
?
?
?
vx,1
vx,2
q
?
?
? =
?
?
?
?2
0
0
?
?
? .
Dr.-Ing. Nicole Gehring 4
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
From that, vx and q can be then calculated as
vx =
0
1
, q = ?1.
Then, according to (2) and (3),
nx =
0
1
, nu = ?1.
iii) Gains mx, mu
To achieve steady state accuracy, the feed-forward gains mx and mu have to satisfy
P (0)
mx
mu
=
A b
cT
0
mx
mu
=
0
1
?
?
?
?
?2 2 0
0 ?1 1
1 0 0
?
?
?
?
?
?
mx1
mx2
mu
?
?
? =
?
?
?
0
0
1
?
?
? .
Hence, mx and mu can be solved as
mx =
1
1
, mu = 1.
c) Considering a sinusoidal disturbance with angular frequency ¦Ø = 2, from di?erentiation
we have
z(t) = sin(2t)
¨Bz(t) = 2 cos(2t)
¡§z(t) = ?4 sin(2t) = ?4z(t).
Choosing
w =
z
¨Bz
the disturbance model can be written as
¨Bw =
0 1
?4 0
W
w
z = 1 0
Z
w.
Dr.-Ing. Nicole Gehring 5
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
The eigenvalues of W are calculated as the roots ¦Ë of the characteristic equation
0 = det(¦ËI ? W )
=
¦Ë ?1
4 ¦Ë
= ¦Ë2
+ 4,
which gives the result
¦Ë1 = 2j, ¦Ë2 = ?2j.
The corresponding eigenvectors vw,i can be calculated from
(W ? ¦ËiI)vw,i = 0.
For ¦Ë1,
?2j 1
?4 ?2j
vw,1,1
vw,1,2
= 0
vw,1 =
1
2j
is an eigenvector, for ¦Ë2,
2j 1
?4 2j
vw,2,1
vw,2,2
= 0
vw,2 =
1
?2j
.
Thus the matrix of the eigenvectors reads
V w =
1 1
2j ?2j
.
Equivalently to (2) and (3)
V x = NxV w
q = nu V w.
Substituting ¦Ë1 and ¦Ë2 respectively into
A ? ¦ËiI b
c 0
P (¦Ëi)
vx
q
=
?eZvw
0
, (4)
Dr.-Ing. Nicole Gehring 6
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
we get
for ¦Ë1:
?
?
?
?2 ? 2j 2 0
0 ?1 ? 2j 1
1 0 0
?
?
?
?
?
?
vx,1,1
vx,1,2
q1
?
?
? =
?
?
?
2
0
0
?
?
?
for ¦Ë2:
?
?
?
?2 + 2j 2 0
0 ?1 + 2j 1
1 0 0
?
?
?
?
?
?
vx,2,1
vx,2,2
q2
?
?
? =
?
?
?
2
0
0
?
?
? ,
which then gives
vx,1 =
0
1
, q1 = 1 + 2j
vx,2 =
0
1
, q2 = 1 ? 2j.
Having determined vw,i, vx,i, and qi, with
vx,1 vx,2 = Nx vw,1 vw,2
q1 q2 = nu vw,1 vw,2 ,
Nx and nu can be determined from
0 0
1 1
=
nx,1,1 nx,1,2
nx,2,1 nx,2,2
1 1
2j ?2j
1 + 2j 1 ? 2j = nu,1 nu,2
1 1
2j ?2j
.
Solving the system of equations
nx,1,1 + 2jnx,1,2 = 0
nx,2,1 + 2jnx,2,2 = 1
nx,1,1 ? 2jnx,1,2 = 0
nx,2,1 ? 2jnx,2,2 = 1
nu,1 + 2jnu,2 = 1 + 2j
nu,1 ? 2jnu,2 = 1 ? 2j
?nally gives
Nx =
0 0
1 0
, nu = 1 1 .
Dr.-Ing. Nicole Gehring 7
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
Solution for Problem 9.3 ¨C Integral control and disturbance observer
a) Given the state representation
¨Bx = Ax + bu + ez
y = c x
where
A =
?2 2
0 ?1
, b =
0
1
, e =
2
0
, c = 1 0 ,
we can get the following representation of the above state representation in the frequency
domain by Laplace transformation:
sX(s) = AX(s) + bU(s) + eZ(s)
Y (s) = c X(s)
By solving the ?rst equation for X(s) and replacing the result in the second one, we
obtain a relation between the transformed input U(s), the disturbance Z(s) and the
output Y (s):
(sI ? A)X(s) = bU(s) + eZ(s)
X(s) = (sI ? A)?1
bU(s) + (sI ? A)?1
eZ(s)
Y (s) = c (sI ? A)?1
bU(s) + c (sI ? A)?1
eZ(s).
From that, the transfer function between z and y reads
Y (s)
Z(s)
= gzy = c (sI ? A)?1
e
= 1 0
s + 2 ?2
0 s + 1
?1
2
0
= 1 0
1
s+2
2
(s+1)(s+2)
0 1
s+1
2
0
=
2
s + 2
.
If you take a look back at the block diagram in Problem 9.2, you will ?nd the answer in
the second block since these two problems share the same system. Surprise!
b) In the undisturbed case, the general controller
u = ?Rx + (Nu + RNx)w + (Mu + RMx)yref
Dr.-Ing. Nicole Gehring 8
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
for this case reads
u = ?r x + (mu + r mx)yref.
To achieve steady state accuracy, the feed-forward gains mx and mu have to satisfy
P (0)
mx
mu
=
A b
cT
0
mx
mu
=
0
1
?
?
?
?2 2 0
0 ?1 1
1 0 0
?
?
?
?
?
?
mx1
mx2
mu
?
?
? =
?
?
?
0
0
1
?
?
? .
Hence, mx and mu read
mx =
1
1
, mu = 1.
c) In order to design the integral feedback, the new state xi is added to the state represen-
tation:
¨Bx = Ax + bu + ez
¨Bxi = yref ? c x.
Then the extended controller
u = ?rx x + rixi + (mu + rx mx)
f
yref
can be substituted in the state representation and we obtain the closed loop
¨Bx
¨Bxi
=
A ? rx bri
?c 0
x
xi
+
bf
1
yref +
e
0
z
=
?
?
?
?2 2 0
?rx,1 ?1 ? rx,2 ri
?1 0 0
?
?
?
?A
?
?
?
x1
x2
xi
?
?
? +
bf
1
?b
yref +
?
?
?
2
0
0
?
?
?
?e
z.
With the eigenvalues at ?4, ?5, and ?6, the desired characteristic polynomial is given
by
(s + 4)(s + 5)(s + 6) = s3
+ 15
p2
s2
+ 74
p1
s + 120
p0
.
The characteristic polynomial of the system is
det sI ? ?A =
s + 2 ?2 0
rx,1 s + rx,2 + 1 ?ri
1 0 s
= s3
+ (rx,2 + 3)
¦Á2
s2
+ (2rx,1 + 2rx,2 + 2)
¦Á1
s + 2r1
¦Á0
.
Dr.-Ing. Nicole Gehring 9
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
Applying the coe?cient matching method
s3
+ (rx,2 + 3)
¦Á2
s2
+ (2rx,1 + 2rx,2 + 2)
¦Á1
s + 2ri
¦Á0
!
= s3
+ 15
p2
s2
+ 74
p1
s + 120
p0
,
we obtain
rx,2 + 3
!
= 15
2rx,1 + 2rx,2 + 2
!
= 74
2ri
!
= 120.
Thus,
rx,1 = 24
rx,2 = 12
ri = 60,
i.e.
rx = 24 12 , ri = 60.
d) Given a constant disturbance z, its corresponding disturbance model can be written as
¨Bw = 0
z = w.
Hence, the augmented state representation reads
¨Bx
¨Bw
=
?
?
?
?2 2 2
0 ?1 0
0 0 0
?
?
?
Ad
?
?
?
x1
x2
w
?
?
? +
?
?
?
0
1
0
?
?
?
bd
u
y = 1 0 0
cd
?
?
?
x1
x2
w
?
?
? .
As for observability, here, we apply the Kalman¡¯s Criterion. The columns of the observ-
ability matrix
Qo =
?
?
?
cd
cd Ad
cd A2
d
?
?
? =
?
?
?
1 0 0
?2 2 2
4 ?2 ?4
?
?
? ,
are linearly independent and thus, the matrix has full rank. Hence, the system is observ-
able.
Dr.-Ing. Nicole Gehring 10
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
e) The desired characteristic polynomial is to be matched with the characteristic polynomial
of the observer error dynamics:
det sI ? Ad + lcd
!
= (s + 10)3
.
Here, the unknown correction matrix L = l has dimension 3 ¡Á 1 since one measurement
is used to correct the three-dimensional state of observer dynamics.
Calculating each side of the equation gives
det sI ? Ad + lcd =
s + l1 + 2 ?2 ?2
l2 s + 1 0
l3 0 s
= s3
+ (l1 + 3)
¦Á2
s2
+ (l1 + 2l2 + 2l3 + 2)
¦Á1
s + 2l3
¦Á0
,
(s + 10)3
= s3
+ 30
p2
s2
+ 300
p1
s + 1000
p0
.
Applying the coe?cient matching method
s3
+ (l1 + 3)
¦Á2
s2
+ (l1 + 2l2 + 2l3 + 2)
¦Á1
s + 2l3
¦Á0
!
= s3
+ 30
p2
s2
+ 300
p1
s + 1000
p0
,
we obtain
l1 + 3 = 30
l1 + 2l2 + 2l3 + 2 = 300
2l3 = 1000,
from which we can then calculate
l1 = 27
l2 = ?364.5
l3 = 500.
Thus, the Luenberger observer is designed as
¨B?x = Ad ?x + bdu + l(y ? ?y),
where the correction matrix is
l =
?
?
?
27
?364.5
500
?
?
? .
Dr.-Ing. Nicole Gehring 11
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
Solution for Problem 9.4 ¨C Three-tank system
a) Inserting the known matrices into the state representation of the three-tank system gives
¨Bx
¨Bw
=
?
?
?
?
?
?
?
?1 1 0 0 0
1 ?2 1 1 0
0 1 ?2 0 1
0 0 0 0 0
0 0 0 0 0
?
?
?
?
?
?
?
?A
x
w
+
?
?
?
?
?
?
?
1 0
0 0
0 1
0 0
0 0
?
?
?
?
?
?
?
?B
u.
i) In the ?rst case, the output y is
y = 1 0 0 0 0
?c1
x
w
.
Then the observability matrix of the (augmented) system is
Qo =
?
?
?
?
?
?
?
?
?
?c1
?c1
?A
?c1
?A
2
?c1
?A
3
?c1
?A
4
?
?
?
?
?
?
?
?
?
=
?
?
?
?
?
?
?
1 0 0 0 0
?1 1 0 0 0
2 ?3 1 1 0
?5 9 ?5 ?3 1
14 ?28 19 9 ?5
?
?
?
?
?
?
?
,
where the last three columns are linearly dependent:
?
?
?
?
?
?
?
0
0
1
?5
19
?
?
?
?
?
?
?
=
?
?
?
?
?
?
?
0
0
1
?3
9
?
?
?
?
?
?
?
? 2
?
?
?
?
?
?
?
0
0
0
1
?5
?
?
?
?
?
?
?
.
Thus the matrix is rank de?cient and the system is unobservable.
ii) In the second case, the output y is
y = 0 0 1 0 0
?c2
x
w
.
Dr.-Ing. Nicole Gehring 12
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
Then the observability matrix of the system is
Qo =
?
?
?
?
?
?
?
?
?
?c2
?c2
?A
?c2
?A
2
?c2
?A
3
?c2
?A
4
?
?
?
?
?
?
?
?
?
=
?
?
?
?
?
?
?
0 0 1 0 0
0 1 ?2 0 1
1 ?4 5 1 ?2
?5 14 ?14 ?4 5
19 ?47 42 14 ?14
?
?
?
?
?
?
?
.
Again, one ?nds the columns to be linearly dependent:
?
?
?
?
?
?
?
0
1
?4
14
47
?
?
?
?
?
?
?
= ?
?
?
?
?
?
?
?
0
0
1
?5
19
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
0
0
1
?4
14
?
?
?
?
?
?
?
+
?
?
?
?
?
?
?
0
1
?2
5
?14
?
?
?
?
?
?
?
,
Thus the matrix is rank de?cient and the system is unobservable.
iii) In the third case, the output y is
y =
1 0 0 0 0
0 0 1 0 0
?C
x
w
.
Then the observability matrix of the system is the combination of the ones of the
previous two cases:
Qo =
?
?
?
?
?
?
?
?
?
?C
?C ?A
?C ?A
2
?C ?A
3
?C ?A
4
?
?
?
?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
1 0 0 0 0
0 0 1 0 0
?1 1 0 0 0
0 1 ?2 0 1
2 ?3 1 1 0
1 ?4 5 1 ?2
?5 9 ?5 ?3 1
?5 14 ?14 ?4 5
14 ?28 19 9 ?5
19 ?47 42 14 ?14
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
.
It can be seen that the ?rst ?ve rows are linearly independent. Thus the matrix has
full rank and the system is observable.
b) Apparently, both eigenvalues of W are ¦Ë = 0. The matrix of the corresponding eigenvec-
tors can be chosen as
V w =
1 0
0 1
.
Dr.-Ing. Nicole Gehring 13
Lehrstuhlf¨¹r
Regelungstechnik
¡±Advanced Control¡±
Winter 2015/16
Exercise 9
Then, Nx and Nu can be determined as follows:
A ? ¦ËI B
C 0
Nx
Nu
=
?EZV w
0
?
?
?
?
?
?
?
?1 1 0 1 0
1 ?2 1 0 0
0 1 ?2 0 1
1 0 0 0 0
0 0 1 0 0
?
?
?
?
?
?
?
?
?
?
?
?
?
?
nx,1,1 nx,1,2
nx,2,1 nx,2,2
nx,3,1 nx,3,2
nu,1,1 nu,1,2
nu,2,1 nu,2,2
?
?
?
?
?
?
?
=
?
?
?
?
?
0 0
?1 0
0 ?10 0
0 0
?
?
?
?
?
4th
row: nx,1,1 = 0, nx,1,2 = 0
5th
row: nx,3,1 = 0, nx,3,2 = 0
2nd
row: nx,2,1 =
1
2
, nx,2,2 = 0
1st
row: nu,1,1 = ?
1
2
, nu,1,2 = 0
3rd
row: nu,2,1 = ?
1
2
, nu,2,2 = ?1.
Consequently, we have
Nx =
?
?
?
0 0
1
2
0
0 0
?
?
? , Nu =
?1
2
0
?1
2
?1
.
Dr.-Ing. Nicole Gehring 14

More Related Content

What's hot (20)

PDF
Complex analysis notes
Prakash Dabhi
?
PPTX
Partial differential equations
aman1894
?
PDF
Partial Differential Equations, 3 simple examples
Enrique Valderrama
?
PPT
Calculus of variation problems
Solo Hermelin
?
PDF
Composed short m sequences
IAEME Publication
?
DOC
It 05104 digsig_1
goutamkrsahoo
?
PDF
Newton's Forward/Backward Difference Interpolation
VARUN KUMAR
?
PPTX
Newton's forward & backward interpolation
Harshad Koshti
?
PPTX
Complex variables
MADHAVASAIYENDUVA
?
PDF
Example triple integral
Zulaikha Ahmad
?
PPT
Ch4
sujay762
?
PPT
Partial Differentiation & Application
Yana Qlah
?
PPTX
Newton¡¯s Forward & backward interpolation
Meet Patel
?
PDF
Interpolation with unequal interval
Dr. Nirav Vyas
?
DOC
Chapter 3 (maths 3)
Prathab Harinathan
?
PDF
Local linear approximation
Tarun Gehlot
?
PPTX
Digital Signal Processing
aj ahmed
?
PPTX
Calculus ppt on "Partial Differentiation"#2
L.D College of Engineering
?
PPTX
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
Kavin Raval
?
Complex analysis notes
Prakash Dabhi
?
Partial differential equations
aman1894
?
Partial Differential Equations, 3 simple examples
Enrique Valderrama
?
Calculus of variation problems
Solo Hermelin
?
Composed short m sequences
IAEME Publication
?
It 05104 digsig_1
goutamkrsahoo
?
Newton's Forward/Backward Difference Interpolation
VARUN KUMAR
?
Newton's forward & backward interpolation
Harshad Koshti
?
Complex variables
MADHAVASAIYENDUVA
?
Example triple integral
Zulaikha Ahmad
?
Partial Differentiation & Application
Yana Qlah
?
Newton¡¯s Forward & backward interpolation
Meet Patel
?
Interpolation with unequal interval
Dr. Nirav Vyas
?
Chapter 3 (maths 3)
Prathab Harinathan
?
Local linear approximation
Tarun Gehlot
?
Digital Signal Processing
aj ahmed
?
Calculus ppt on "Partial Differentiation"#2
L.D College of Engineering
?
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
Kavin Raval
?

Viewers also liked (7)

PDF
Joe Paine Portfolio
Joe Paine
?
PDF
Princess cut diamond engagement ring
designsbyknr
?
PDF
Cushion diamond engagement ring
designsbyknr
?
DOCX
Terrance Brown revised Fueler Resume
Terrance Brownn
?
PDF
Portfolio Marion Saive
Marion Saive
?
ODP
Trabajo de musica (no borrar)
Fran Fornelino Lucas
?
ODP
Trabajo de musica (no borrar)
Fran Fornelino Lucas
?
Joe Paine Portfolio
Joe Paine
?
Princess cut diamond engagement ring
designsbyknr
?
Cushion diamond engagement ring
designsbyknr
?
Terrance Brown revised Fueler Resume
Terrance Brownn
?
Portfolio Marion Saive
Marion Saive
?
Trabajo de musica (no borrar)
Fran Fornelino Lucas
?
Trabajo de musica (no borrar)
Fran Fornelino Lucas
?
Ad

Similar to adv-2015-16-solution-09 (20)

PPTX
Resurgence2020-Sueishi an¨¢lise wkb com in
vadfilho
?
PDF
On Uq(sl2)-actions on the quantum plane
Steven Duplij (Stepan Douplii)
?
PDF
Solution set 3
»Û»· ÕÔ
?
PPT
lec z-transform.ppt
MohammadRefai6
?
PPT
Z transform and Properties of Z Transform
AnujKumar734472
?
PPTX
Integration
RipaBiba
?
PDF
Solution to schrodinger equation with dirac comb potential
slides
?
PDF
U unit3 vm
Akhilesh Deshpande
?
PDF
Applications of Differential Calculus in real life
OlooPundit
?
PDF
21 4 ztransform
Mahyar Alzobaidy
?
PDF
Maths digital text
VISHNUNIVASPRIYA
?
PPT
Ph 101-9 QUANTUM MACHANICS
Chandan Singh
?
PDF
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Alexander Litvinenko
?
PPT
Transmission lines
umavijay
?
PDF
U unit4 vm
Akhilesh Deshpande
?
PPTX
group3ppt-240508074515-Engineering Mathematics II Presentation.pptx
AmolAher20
?
PDF
Reachability Analysis Control of Non-Linear Dynamical Systems
M Reza Rahmati
?
Resurgence2020-Sueishi an¨¢lise wkb com in
vadfilho
?
On Uq(sl2)-actions on the quantum plane
Steven Duplij (Stepan Douplii)
?
Solution set 3
»Û»· ÕÔ
?
lec z-transform.ppt
MohammadRefai6
?
Z transform and Properties of Z Transform
AnujKumar734472
?
Integration
RipaBiba
?
Solution to schrodinger equation with dirac comb potential
slides
?
Applications of Differential Calculus in real life
OlooPundit
?
21 4 ztransform
Mahyar Alzobaidy
?
Maths digital text
VISHNUNIVASPRIYA
?
Ph 101-9 QUANTUM MACHANICS
Chandan Singh
?
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Alexander Litvinenko
?
Transmission lines
umavijay
?
group3ppt-240508074515-Engineering Mathematics II Presentation.pptx
AmolAher20
?
Reachability Analysis Control of Non-Linear Dynamical Systems
M Reza Rahmati
?
Ad

adv-2015-16-solution-09

  • 1. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 Solution 9 ¨C Disturbance Rejection and Integral Control Solution for Problem 9.1 ¨C Disturbance models a) The ?rst signal is a piecewise exponential function. The tangent at the initial point, say t = t0, crosses the axis (which also marks the ?nal value of the function) at t = T. Hence, the exponential function decays with ? 1 T . We assume that at each instant ti, the initial value z(ti) of z is reset. Thus, the disturbance can be represented by z(t) = e? t T z(ti). Then, for each interval of the disturbance, Di?erentiating z gives ¨Bz(t) = ? 1 T e? t T z(ti) = ? 1 T z(t). Choosing w(t) = z(t), the disturbance model reads ¨Bw = ? 1 T w z = w. b) Here, z is a piecewise constant disturbance which can be denoted by z(ti). For every time interval between two jumps, say t ¡Ê [ti, ti+1), ¨Bz(t) = 0. By de?ning w(t) = z(t), the disturbance model reads ¨Bw = 0 z = w. c) In the last case, z is a piecewise harmonic oscillations disturbance, which features a constant angular frequency ¦Ø = 2¦Ð T , and di?erent phases ?i and amplitude Ai in various segments. Additionally, it has a constant o?set z(ti). Combining the oscillation and the o?set yields z(t) = zsin(t) + zconst(t) = Ai sin 2¦Ð T t + ?i + z(ti). Dr.-Ing. Nicole Gehring 1
  • 2. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 Di?erentiating z twice gives ¨Bz(t) = 2¦Ð T Ai cos 2¦Ð T t + ?i + z(ti) ¡§z(t) = ? 2¦Ð T 2 Ai sin 2¦Ð T t + ?i + z(ti) = ?¦Ø2 zsin(t). Thus, with the de?nition w = ? ? ? w1 w2 w3 ? ? ? = ? ? ? zsin ¨Bzsin zconst ? ? ? , the disturbance model can be expressed in terms of ¨Bw = ? ? ? 0 1 0 ?¦Ø2 0 0 0 0 0 ? ? ? w z = 1 0 1 w. Solution for Problem 9.2 ¨C Disturbance feedback a) Since the block diagram of the system is given in the frequency domain, the relationship between the states can be written as follows: X1(s) X2(s) + Z(s) = 2 s + 2 t d ¨Bx1(t) = ?2x1(t) + 2x2(t) + 2z(t) X2(s) U(s) = 1 s + 1 t d ¨Bx2(t) = ?x2(t) + u(t), which in state representation is equivalent to ¨Bx1 ¨Bx2 = ?2 2 0 ?1 x1 x2 + 0 1 u + 2 0 z y = 1 0 x1 x2 . b) For this question, the feedback vector r , and the gains nx, nu, mx and mu are going to be designed one by one. Due to the superposition principle, this is always possible. Dr.-Ing. Nicole Gehring 2
  • 3. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 i) Feedback matrix r From the state representation we know that the system is characterized by the following matrices A = ?2 2 0 ?1 , b = 0 1 , e = 2 0 , c = 1 0 , while we assume the feedback matrix to have the form r = r1 r2 . With all of the eigenvalues at ?5, the desired characteristic polynomial is given by (s + 5)2 = s2 + 10 p1 s + 25 p0 . The characteristic polynomial of the closed-loop system is calculated as follows: det sI ? A + br = det s + 2 ?2 0 s + 1 + 0 0 r1 r2 = s + 2 ?2 r1 s + r2 + 1 = s2 + (r2 + 3) ¦Á1 s + 2r1 + 2r2 + 2 ¦Á0 Applying the coe?cient matching method s2 + (r2 + 3) ¦Á1 s + 2r1 + 2r2 + 2 ¦Á0 ! = s2 + 10 p1 s + 25 p0 , we obtain r2 + 3 ! = 10 2r1 + 2r2 + 2 ! = 25. Thus, r1 = 7 r2 = 4.5, i.e. the state feedback vector is r = 7 4.5 . Dr.-Ing. Nicole Gehring 3
  • 4. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 ii) Gains nx, nu The goal is to design nx and nu such that the eigenvalue of the disturbance model are rendered unobservable. According to the Hautus Criterion (for observability), the goal is equivalent to to the matrix H(¦Ëi) = ? ? ? ? ? A ? br ? ¦ËiI eZ + b(nu + r nx) 0 W ? ¦ËiI c 0 ?I nx ? ? ? ? ? being rank de?cient for ¦Ëi which is an eigenvalue of W . Hence H(¦Ëi) vx,i vw,i = 0. (1) Given a (piecewise) constant disturbance, the disturbance model ¨Bw = 0 z = w is characterized by scalars W = 0 Z = 1. Apparently, the eigenvalues of W is ¦Ë = 0, whose eigenvector can be computed from (W ? ¦Ë)vw = 0. The result of which is chosen as vw = 1. The last row of (1) gives the relationship between vx and vw: vx = nxvw. (2) Then, introducing the shortcut q = nuvw, (3) and substituting (2) and (3) into the ?rst equation in (1), we obtain (A ? ¦Ë) vx + bqi = ?eZvw. This can further be combined with the third equation in (1) and gives A ? ¦ËI b c 0 P (¦Ë) vx q = ?eZvw 0 ? ? ? ? ?2 2 0 0 ?1 1 1 0 0 ? ? ? ? ? ? vx,1 vx,2 q ? ? ? = ? ? ? ?2 0 0 ? ? ? . Dr.-Ing. Nicole Gehring 4
  • 5. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 From that, vx and q can be then calculated as vx = 0 1 , q = ?1. Then, according to (2) and (3), nx = 0 1 , nu = ?1. iii) Gains mx, mu To achieve steady state accuracy, the feed-forward gains mx and mu have to satisfy P (0) mx mu = A b cT 0 mx mu = 0 1 ? ? ? ? ?2 2 0 0 ?1 1 1 0 0 ? ? ? ? ? ? mx1 mx2 mu ? ? ? = ? ? ? 0 0 1 ? ? ? . Hence, mx and mu can be solved as mx = 1 1 , mu = 1. c) Considering a sinusoidal disturbance with angular frequency ¦Ø = 2, from di?erentiation we have z(t) = sin(2t) ¨Bz(t) = 2 cos(2t) ¡§z(t) = ?4 sin(2t) = ?4z(t). Choosing w = z ¨Bz the disturbance model can be written as ¨Bw = 0 1 ?4 0 W w z = 1 0 Z w. Dr.-Ing. Nicole Gehring 5
  • 6. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 The eigenvalues of W are calculated as the roots ¦Ë of the characteristic equation 0 = det(¦ËI ? W ) = ¦Ë ?1 4 ¦Ë = ¦Ë2 + 4, which gives the result ¦Ë1 = 2j, ¦Ë2 = ?2j. The corresponding eigenvectors vw,i can be calculated from (W ? ¦ËiI)vw,i = 0. For ¦Ë1, ?2j 1 ?4 ?2j vw,1,1 vw,1,2 = 0 vw,1 = 1 2j is an eigenvector, for ¦Ë2, 2j 1 ?4 2j vw,2,1 vw,2,2 = 0 vw,2 = 1 ?2j . Thus the matrix of the eigenvectors reads V w = 1 1 2j ?2j . Equivalently to (2) and (3) V x = NxV w q = nu V w. Substituting ¦Ë1 and ¦Ë2 respectively into A ? ¦ËiI b c 0 P (¦Ëi) vx q = ?eZvw 0 , (4) Dr.-Ing. Nicole Gehring 6
  • 7. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 we get for ¦Ë1: ? ? ? ?2 ? 2j 2 0 0 ?1 ? 2j 1 1 0 0 ? ? ? ? ? ? vx,1,1 vx,1,2 q1 ? ? ? = ? ? ? 2 0 0 ? ? ? for ¦Ë2: ? ? ? ?2 + 2j 2 0 0 ?1 + 2j 1 1 0 0 ? ? ? ? ? ? vx,2,1 vx,2,2 q2 ? ? ? = ? ? ? 2 0 0 ? ? ? , which then gives vx,1 = 0 1 , q1 = 1 + 2j vx,2 = 0 1 , q2 = 1 ? 2j. Having determined vw,i, vx,i, and qi, with vx,1 vx,2 = Nx vw,1 vw,2 q1 q2 = nu vw,1 vw,2 , Nx and nu can be determined from 0 0 1 1 = nx,1,1 nx,1,2 nx,2,1 nx,2,2 1 1 2j ?2j 1 + 2j 1 ? 2j = nu,1 nu,2 1 1 2j ?2j . Solving the system of equations nx,1,1 + 2jnx,1,2 = 0 nx,2,1 + 2jnx,2,2 = 1 nx,1,1 ? 2jnx,1,2 = 0 nx,2,1 ? 2jnx,2,2 = 1 nu,1 + 2jnu,2 = 1 + 2j nu,1 ? 2jnu,2 = 1 ? 2j ?nally gives Nx = 0 0 1 0 , nu = 1 1 . Dr.-Ing. Nicole Gehring 7
  • 8. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 Solution for Problem 9.3 ¨C Integral control and disturbance observer a) Given the state representation ¨Bx = Ax + bu + ez y = c x where A = ?2 2 0 ?1 , b = 0 1 , e = 2 0 , c = 1 0 , we can get the following representation of the above state representation in the frequency domain by Laplace transformation: sX(s) = AX(s) + bU(s) + eZ(s) Y (s) = c X(s) By solving the ?rst equation for X(s) and replacing the result in the second one, we obtain a relation between the transformed input U(s), the disturbance Z(s) and the output Y (s): (sI ? A)X(s) = bU(s) + eZ(s) X(s) = (sI ? A)?1 bU(s) + (sI ? A)?1 eZ(s) Y (s) = c (sI ? A)?1 bU(s) + c (sI ? A)?1 eZ(s). From that, the transfer function between z and y reads Y (s) Z(s) = gzy = c (sI ? A)?1 e = 1 0 s + 2 ?2 0 s + 1 ?1 2 0 = 1 0 1 s+2 2 (s+1)(s+2) 0 1 s+1 2 0 = 2 s + 2 . If you take a look back at the block diagram in Problem 9.2, you will ?nd the answer in the second block since these two problems share the same system. Surprise! b) In the undisturbed case, the general controller u = ?Rx + (Nu + RNx)w + (Mu + RMx)yref Dr.-Ing. Nicole Gehring 8
  • 9. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 for this case reads u = ?r x + (mu + r mx)yref. To achieve steady state accuracy, the feed-forward gains mx and mu have to satisfy P (0) mx mu = A b cT 0 mx mu = 0 1 ? ? ? ?2 2 0 0 ?1 1 1 0 0 ? ? ? ? ? ? mx1 mx2 mu ? ? ? = ? ? ? 0 0 1 ? ? ? . Hence, mx and mu read mx = 1 1 , mu = 1. c) In order to design the integral feedback, the new state xi is added to the state represen- tation: ¨Bx = Ax + bu + ez ¨Bxi = yref ? c x. Then the extended controller u = ?rx x + rixi + (mu + rx mx) f yref can be substituted in the state representation and we obtain the closed loop ¨Bx ¨Bxi = A ? rx bri ?c 0 x xi + bf 1 yref + e 0 z = ? ? ? ?2 2 0 ?rx,1 ?1 ? rx,2 ri ?1 0 0 ? ? ? ?A ? ? ? x1 x2 xi ? ? ? + bf 1 ?b yref + ? ? ? 2 0 0 ? ? ? ?e z. With the eigenvalues at ?4, ?5, and ?6, the desired characteristic polynomial is given by (s + 4)(s + 5)(s + 6) = s3 + 15 p2 s2 + 74 p1 s + 120 p0 . The characteristic polynomial of the system is det sI ? ?A = s + 2 ?2 0 rx,1 s + rx,2 + 1 ?ri 1 0 s = s3 + (rx,2 + 3) ¦Á2 s2 + (2rx,1 + 2rx,2 + 2) ¦Á1 s + 2r1 ¦Á0 . Dr.-Ing. Nicole Gehring 9
  • 10. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 Applying the coe?cient matching method s3 + (rx,2 + 3) ¦Á2 s2 + (2rx,1 + 2rx,2 + 2) ¦Á1 s + 2ri ¦Á0 ! = s3 + 15 p2 s2 + 74 p1 s + 120 p0 , we obtain rx,2 + 3 ! = 15 2rx,1 + 2rx,2 + 2 ! = 74 2ri ! = 120. Thus, rx,1 = 24 rx,2 = 12 ri = 60, i.e. rx = 24 12 , ri = 60. d) Given a constant disturbance z, its corresponding disturbance model can be written as ¨Bw = 0 z = w. Hence, the augmented state representation reads ¨Bx ¨Bw = ? ? ? ?2 2 2 0 ?1 0 0 0 0 ? ? ? Ad ? ? ? x1 x2 w ? ? ? + ? ? ? 0 1 0 ? ? ? bd u y = 1 0 0 cd ? ? ? x1 x2 w ? ? ? . As for observability, here, we apply the Kalman¡¯s Criterion. The columns of the observ- ability matrix Qo = ? ? ? cd cd Ad cd A2 d ? ? ? = ? ? ? 1 0 0 ?2 2 2 4 ?2 ?4 ? ? ? , are linearly independent and thus, the matrix has full rank. Hence, the system is observ- able. Dr.-Ing. Nicole Gehring 10
  • 11. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 e) The desired characteristic polynomial is to be matched with the characteristic polynomial of the observer error dynamics: det sI ? Ad + lcd ! = (s + 10)3 . Here, the unknown correction matrix L = l has dimension 3 ¡Á 1 since one measurement is used to correct the three-dimensional state of observer dynamics. Calculating each side of the equation gives det sI ? Ad + lcd = s + l1 + 2 ?2 ?2 l2 s + 1 0 l3 0 s = s3 + (l1 + 3) ¦Á2 s2 + (l1 + 2l2 + 2l3 + 2) ¦Á1 s + 2l3 ¦Á0 , (s + 10)3 = s3 + 30 p2 s2 + 300 p1 s + 1000 p0 . Applying the coe?cient matching method s3 + (l1 + 3) ¦Á2 s2 + (l1 + 2l2 + 2l3 + 2) ¦Á1 s + 2l3 ¦Á0 ! = s3 + 30 p2 s2 + 300 p1 s + 1000 p0 , we obtain l1 + 3 = 30 l1 + 2l2 + 2l3 + 2 = 300 2l3 = 1000, from which we can then calculate l1 = 27 l2 = ?364.5 l3 = 500. Thus, the Luenberger observer is designed as ¨B?x = Ad ?x + bdu + l(y ? ?y), where the correction matrix is l = ? ? ? 27 ?364.5 500 ? ? ? . Dr.-Ing. Nicole Gehring 11
  • 12. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 Solution for Problem 9.4 ¨C Three-tank system a) Inserting the known matrices into the state representation of the three-tank system gives ¨Bx ¨Bw = ? ? ? ? ? ? ? ?1 1 0 0 0 1 ?2 1 1 0 0 1 ?2 0 1 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ?A x w + ? ? ? ? ? ? ? 1 0 0 0 0 1 0 0 0 0 ? ? ? ? ? ? ? ?B u. i) In the ?rst case, the output y is y = 1 0 0 0 0 ?c1 x w . Then the observability matrix of the (augmented) system is Qo = ? ? ? ? ? ? ? ? ? ?c1 ?c1 ?A ?c1 ?A 2 ?c1 ?A 3 ?c1 ?A 4 ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? 1 0 0 0 0 ?1 1 0 0 0 2 ?3 1 1 0 ?5 9 ?5 ?3 1 14 ?28 19 9 ?5 ? ? ? ? ? ? ? , where the last three columns are linearly dependent: ? ? ? ? ? ? ? 0 0 1 ?5 19 ? ? ? ? ? ? ? = ? ? ? ? ? ? ? 0 0 1 ?3 9 ? ? ? ? ? ? ? ? 2 ? ? ? ? ? ? ? 0 0 0 1 ?5 ? ? ? ? ? ? ? . Thus the matrix is rank de?cient and the system is unobservable. ii) In the second case, the output y is y = 0 0 1 0 0 ?c2 x w . Dr.-Ing. Nicole Gehring 12
  • 13. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 Then the observability matrix of the system is Qo = ? ? ? ? ? ? ? ? ? ?c2 ?c2 ?A ?c2 ?A 2 ?c2 ?A 3 ?c2 ?A 4 ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? 0 0 1 0 0 0 1 ?2 0 1 1 ?4 5 1 ?2 ?5 14 ?14 ?4 5 19 ?47 42 14 ?14 ? ? ? ? ? ? ? . Again, one ?nds the columns to be linearly dependent: ? ? ? ? ? ? ? 0 1 ?4 14 47 ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? 0 0 1 ?5 19 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ?4 14 ? ? ? ? ? ? ? + ? ? ? ? ? ? ? 0 1 ?2 5 ?14 ? ? ? ? ? ? ? , Thus the matrix is rank de?cient and the system is unobservable. iii) In the third case, the output y is y = 1 0 0 0 0 0 0 1 0 0 ?C x w . Then the observability matrix of the system is the combination of the ones of the previous two cases: Qo = ? ? ? ? ? ? ? ? ? ?C ?C ?A ?C ?A 2 ?C ?A 3 ?C ?A 4 ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 0 0 0 1 0 0 ?1 1 0 0 0 0 1 ?2 0 1 2 ?3 1 1 0 1 ?4 5 1 ?2 ?5 9 ?5 ?3 1 ?5 14 ?14 ?4 5 14 ?28 19 9 ?5 19 ?47 42 14 ?14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . It can be seen that the ?rst ?ve rows are linearly independent. Thus the matrix has full rank and the system is observable. b) Apparently, both eigenvalues of W are ¦Ë = 0. The matrix of the corresponding eigenvec- tors can be chosen as V w = 1 0 0 1 . Dr.-Ing. Nicole Gehring 13
  • 14. Lehrstuhlf¨¹r Regelungstechnik ¡±Advanced Control¡± Winter 2015/16 Exercise 9 Then, Nx and Nu can be determined as follows: A ? ¦ËI B C 0 Nx Nu = ?EZV w 0 ? ? ? ? ? ? ? ?1 1 0 1 0 1 ?2 1 0 0 0 1 ?2 0 1 1 0 0 0 0 0 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? nx,1,1 nx,1,2 nx,2,1 nx,2,2 nx,3,1 nx,3,2 nu,1,1 nu,1,2 nu,2,1 nu,2,2 ? ? ? ? ? ? ? = ? ? ? ? ? 0 0 ?1 0 0 ?10 0 0 0 ? ? ? ? ? 4th row: nx,1,1 = 0, nx,1,2 = 0 5th row: nx,3,1 = 0, nx,3,2 = 0 2nd row: nx,2,1 = 1 2 , nx,2,2 = 0 1st row: nu,1,1 = ? 1 2 , nu,1,2 = 0 3rd row: nu,2,1 = ? 1 2 , nu,2,2 = ?1. Consequently, we have Nx = ? ? ? 0 0 1 2 0 0 0 ? ? ? , Nu = ?1 2 0 ?1 2 ?1 . Dr.-Ing. Nicole Gehring 14