2. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
agenda
background
problem statement
NA approach
INS/GNSS gravimetry: geodesy as usual
future
2
3. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
background
3
4. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
gravimetry what is it?
4
geophysical method to measure the
gravity field of the Earth.
5. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
gravimetry what is it?
5
geophysical method to measure the
gravity field of the Earth.
helps the understanding of mass
transport phenomena within our planet, in
the oceans and atmosphere
6. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
6
geodetic motivation
sea-level rise
river flooding
coastal flooding from hurricane
...
7. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
gravimetry - applications
precise terrestrial reference frame
local geoid determination
7
8. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
gravimetry - applications
precise terrestrial reference frame
local geoid determination
8
volcano monitoring
glaciers melting monitoring
plate boundaries
deformation measurements
eartquake tectonic studies
9. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
gravimetry - applications
precise terrestrial reference frame
local geoid determination
9
volcano monitoring
glaciers melting monitoring
plate boundaries
deformation measurements
eartquake tectonic studies
Natural resources (i.e. Mineral exploration)
10. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
gravimetry measurement methods
10
GLOBAL REGIONAL LOCAL
CHAMP (> 600 km)
GRACE (> 270 km)
GOCE (> 70 km) terrestrial
10 km100 km1000 km 1 km
11. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
gravimetry measurement methods
11
Kinematic gravimetry
(> 1 km)
GLOBAL REGIONAL LOCAL
CHAMP (> 600 km)
GRACE (> 270 km)
GOCE (> 70 km) terrestrial
10 km100 km1000 km 1 km
12. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
12
Airborne gravity is the only
technique that can
adequately connect existing
terrestrial data to existing
ship and altimetry data in
the oceans and fill coverage
gaps.
Airborne data will not
replace existing data, but
will be used as a baseline for
correcting that data to be
consistent across the
country.
13. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
13
airborne gravimetry
14. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
14
airborne gravimetry
15. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
problem statement
15
16. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
kinematic gravimetry (KG) - concept
1950s: placing gravimeters
onboard vehicles
16
rapid and high-resolution
surveys in oceans, polar
regions, high mountains,
tropical forests...
17. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
17
The first LaCoste-Romberg
Model S Air-Sea
Gravimeter.
1958 - Air force Geophysics Lab
18. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
18
LaCoste-Romberg Model S
19. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
19
LaCoste-Romberg TAGS-6
20. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
20
BGM-3 Gravimeter - Bell Aerospace
21. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
21
Sea Gravimeter KSS31. Bodenseewerk Geosystem GmbH
22. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
22
Chekan-A Gravimeter
23. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
23
1965 - Carson Services, Inc.
24. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
kinematic gravimetry (KG) - concept
1950s: placing gravimeters
onboard vehicles
1960s: INS was introduced
as as surveying instrument
24
positioning limited by the
unknown anomalous
gravity field
25. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
kinematic gravimetry (KG) - concept
1950s: placing gravimeters
onboard vehicles
1960s: INS was introduced
as as surveying instrument
25
positioning limited by the
unknown anomalous
gravity field
gravity field will be recovered from INS
measurements if accurate kinematic
positions and velocities are known and
the system errors are kept small
26. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
26
INS used for airborne gravimetry
27. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
kinematic gravimetry (KG) - concept
1950s: placing gravimeters
onboard vehicles
1960s: INS was introduced
as as surveying instrument
1980s: GPS represented
the opportunity to measure a
with adequate accuracy and
precision
27
28. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
28
Rampant Lion project
29. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
kinematic gravimetry (KG) - concept
1950s: placing gravimeters
onboard vehicles
1960s: INS was introduced
as as surveying instrument
1980s: GPS represented
the opportunity to measure a
with adequate accuracy and
precision
29
gravity computation is easy,
in principle ...
30. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
... but, gravity computation is hard
30
very dynamic environtment:
noise-to-signal ratios > 1000
largest contributions to noise:
high frequency noise (vibration)
noise amplification when computing
accelerations
GNSS INS
meas. principle dist. from time delays inertial accel.
system operation reliance on space segment autonomous
output variables position, time position, orientation
long-wave. errors low high
short-wave. errors high low
data rate low (1Hz) high ( 25Hz)
instrument cost low high
INS/GNSS
limiting factors
31. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
airborne gravimetry - operational constraints
navigation system used to position the aircraft
aircraft speed: compromise between low vibrations (high
speed) and high spatial resolution (low speed)
flight altitude: the signal to noise ratio improve with a lower
altitude
use of an autopilot: to provide both smoother flight path and
the maintenance of a reference altitude
weather condition: low turbulence is essential if high
frequency aircraft accelerations are to be avoided
design of the aircraft
design of the survey
31
32. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
32
airborne gravity survey
33. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
33
airborne gravity survey
34. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
KG - mathematical models
34
INS navigation equations
35. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
stochastic processes
INS/GNSS gravimetry traditional approach
35
apriori stochastic info from manufacturers,
tricky calibrations and field testing modelling
36. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
INS/GNSS-g traditional approach
36
process noises:
where
dynamical system
State Space Approach (SSA)
prediction, Kalman filtering and
smoothing
generates and optimal estimates, but
not the best
cannot use all the observational info.
disadvantage trying to deal with space
correlations (i.e. crossover points)
37. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
INS/GPS-g SSA methodology
37
STATE SPACE APPROACH
prediction + KF + smoothing
STOCHASTIC TIME SERIES
stochastic differential equations
state vector
observations
Sander Geophysics
US Naval Research Lab
Geomatics Canada
KMS
AGMASCO
ITC Moscow
Intermap
Univ. of Calgary (UofC
Univ. Porto
scalar: L&R + platform + DGPS
scalar/vector: INS/GNNS
38. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
INS/GPS-g SSA methodology
38
STATE SPACE APPROACH
prediction + KF + smoothing
STOCHASTIC TIME SERIES
stochastic differential equations
state vector
observations
scalar: L&R + platform + DGPS
scalar/vector: INS/GNNS
Kananaskis (UofC, 1995)
Skagerrak (AGMASCO, 1996)
Azores (AGMASCO, 1997)
Greenland (UofC-KMS, 1998)
Greenland, Baltic Sea, Great
Barrier Reef (KMS, 1999)
Alexandria (UofC, 2000)
Greenland (KMS, 2000)
Greenland, Crete, Corsica
(KMS, 2001)
Geophysical surveys
(Intermap, Sander Geophysics)
43. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
43
Greenland Aerogeophysical project 1991-92
US Naval Research Lab
NOAA
Danish National Survey (now DTU-Space)
NIMA (now NGA)
44. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
44
ArcGP
1992-2003
45. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
45
Arctic gravity project
46. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
46
Malaysia 2002-3
47. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
47
Rampant Lion project - Afghanistan 2006,2008
48. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
NA approach
48
49. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
INS/GNSS-g Network Approach
49
Network Approach (NA)
observation equations
least-squares adjustment (LSA)
the key to overcome SSA limitations is to look
as stochastic differential equations (SDE)
discretisation
leads to a geodetic network new
approach
Geodesy
as usual
50. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
NA network approach
general advantages:
parameters related by observations regardless of time
networks can be static and/or dynamic
covariance information can be computed selectively
variance component estimation can be performed
INS/GNSS gravimetry advantages:
rigorous Earth gravity modelling
better exploiting of external observational information
more information for further geoid determination
drawback:
cannot be applied to real-time navigation
50
51. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
INS/GPS-g approaches
PAST PRESENT FUTURE
51
NETWORK APPROACH
least-squares network adjustment
CLASSICAL NETWORKS
static model, param. and obs.
NEW NETWORK APPROACH
dynamic observation model
static observation model
time dependent parameters
(stochastic processes)
time independent parameters
(random variable)
independent observations
STATE SPACE APPROACH
prediction + KF + smoothing
STOCHASTIC TIME SERIES
stochastic differential equations
state vector
observations
STOCHASTIC
TIME SERIES
STATIC
NETWORKS
TIME DEPENDENT NETWORKS
52. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
INS/GNSS-g NA approaches
CLASSICAL NET TIME DEPENDENT NET
52
Termens,A., Colomina,I. Network
approach versus state-space
approach for strapdown inertial
kinematic gravimetry. GGSM2004,
IAG Symposia Vol. 129, pp.
107-112
Termens,A. A Network Approach
for Strapdown Inertial Kinematic
Gravimetry. Ph.D.
Colomina,I., Bl叩zquez,M. A unified
approach to static and dynamic
modelling in photogrammetry and
remote sensing. International
Archives of the Photogrammetry,
Remote Sensing and Spatial
Information Sciences 35(B1). pp.
178-183
GAL FP7-287193 project Galileo
for Gravity
GAL final review. Castelldefels,
2014-02-10.
2004
2012
2014
...
53. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
INS/GNSS-g NA approaches
CLASSICAL NET TIME DEPENDENT NET
53
Termens,A., Colomina,I. Network
approach versus state-space
approach for strapdown inertial
kinematic gravimetry. GGSM2004,
IAG Symposia Vol. 129, pp.
107-112
Termens,A. A Network Approach
for Strapdown Inertial Kinematic
Gravimetry. Ph.D.
Colomina,I., Bl叩zquez,M. A unified
approach to static and dynamic
modelling in photogrammetry and
remote sensing. International
Archives of the Photogrammetry,
Remote Sensing and Spatial
Information Sciences 35(B1). pp.
178-183
GAL FP7-287193 project Galileo
for Gravity
2004
2012
2014
...
GeoTeX
GENA
54. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
INS/GNSS gravimetry:
geodesy as usual
54
55. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
ICC GeoTeX package (1988 - )
adopts a simple adjustment oriented point of view
main data types: observations, parameters and sensors.
Functional model
FORTRAN-90 dynamic memory 32-bit implementation
55
56. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
GeoTeX functional model implementation
56
discretization
deriva1:
midpoint or
leap-frog
stochastic process Hz(INS)
Hz(cal)
Hz(g)
interpolation
intp: nearest point
RW process
57. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
INS/GNSS-g GeoTeX models
57
gravity
GNSS
INS
equations
58. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
GeoTeX WIB INS angular rate vector model
58
Euler angles differential equations:
equivalent equations in terms of quaternions:
GeoTeX/ACX functional model
59. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
GeoTeX gravity parameters
59
DG-P
G-P
GRAVITY-P
G-P
DG-P
65. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
gravimetry measurement methods
65
Kinematic gravimetry
(> 1 km)
GLOBAL REGIONAL LOCAL
CHAMP (> 600 km)
GRACE (> 270 km)
GOCE (> 70 km) terrestrial
10 km100 km1000 km 1 km
66. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
66
alternative survey platforms ?
67. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
67
airborne gravimetry
68. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
68
alternative survey platforms ?
69. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
69
global gravity long-wavelength help aerogravity
70. M. Assumpci坦 Termens, 2017-05-09, Enginyeria en Geoinformaci坦 i Geomtica
70
satellite gravity: GOCE