際際滷

際際滷Share a Scribd company logo
Aljabar Boolean
Aljabar Boolean
Aljabar Boolean
a b a.b
0 0 0
0 1 0
1 0 0
1 1 1
a b a + b
0 0 0
0 1 1
1 0 1
1 1 1
a 
0 1
1 0
Aljabar Boolean
a B a ab a + ab a + b
0 0 1 0 0 0
0 1 1 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1
Aljabar Boolean
Aljabar Boolean
a. Hukum Asosiatif
(i) a + (b + c) = (a + b) + c
(ii) a . (b . c) = (a . b) . c
b. Hukum Komutatif
(i) a + b = b + a
(ii) a . b = b . A
c. Hukum Idempoten (Hukum Perluasan)
(i) a + a = a
(ii) a . a = a
d. Hukum Identitas
(i) a + 0 = a
(ii) a . 1 = a
e. Hukum Absorbsi
(i) a + ( a . b ) = a
(ii) a ( a + b ) = a
(iii) a + ( a . b ) = a + b
(iv) a ( a + b ) = a.b
f. Hukum dominansi
(i) a.1 = a
(ii) a+0 = a
(iii) a+1 = 1
(iv) a . 0 = 0
g. Hukum involusi
(i) (a) = a
h. Hukum Komplementasi
(i) a + a = 1
(ii) a . a = 0
i. Hukum distributif:
(i) a + ( b . c ) = ( a + b ) ( a + c )
(ii) a ( b + c) = a . b + a . c
j. Hukum De Morgan
(i) (a + b) = a. b
(ii) (a . b) = a + b
Aljabar Boolean
Aljabar Boolean
Aljabar Boolean
Aljabar Boolean
x y z f(x,y,z) = xyz + x
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
Aljabar Boolean
x y z f=xyz + xyz + xyg g =xz + xy
0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 0 0
1 1 1 0 0
Aljabar Boolean
Aljabar Boolean
x y
Minterm Maxterm
Suku Lambang Suku Lambang
0 0 xy m0 x + y M0
0 1 xy m1 x + y M1
1 0 xy m2 x + y M2
1 1 xy m3 x + y M3
x y z
Minterm Maxterm
Suku Lambang Suku Lambang
0 0 0 xyz m0 x + y + z M0
0 0 1 xyz m1 x + y + z M1
0 1 0 xyz m2 x + y + z M2
0 1 1 xyz m3 x + y + z M3
1 0 0 xyz m4 x + y + z M4
1 0 1 xyz m5 x + y + z M5
1 1 0 xyz m6 x + y + z M6
1 1 1 xyz m7 x + y + z M7
x y z xyz xyz xyz f(x,y,z)
0 0 0 0 0 0 0
0 0 1 1 0 0 1
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 1 0 1
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 1 1
Aljabar Boolean
Aljabar Boolean
Aljabar Boolean
Aljabar Boolean
xy xy
xy xy
xyz

xyz xyz xyz
xyz xyz xyz xyz
Aljabar Boolean
wxyz wxyz wxyz wxyz
wxyz wxyz wxyz wxyz
wxyz wxyz wxyz wxyz
wxyz wxyz wxyz wxyz
Aljabar Boolean
Aljabar Boolean
Aljabar Boolean
Aljabar Boolean

More Related Content

Aljabar Boolean

  • 4. a b a.b 0 0 0 0 1 0 1 0 0 1 1 1 a b a + b 0 0 0 0 1 1 1 0 1 1 1 1
  • 7. a B a ab a + ab a + b 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1
  • 10. a. Hukum Asosiatif (i) a + (b + c) = (a + b) + c (ii) a . (b . c) = (a . b) . c b. Hukum Komutatif (i) a + b = b + a (ii) a . b = b . A c. Hukum Idempoten (Hukum Perluasan) (i) a + a = a (ii) a . a = a d. Hukum Identitas (i) a + 0 = a (ii) a . 1 = a e. Hukum Absorbsi (i) a + ( a . b ) = a (ii) a ( a + b ) = a (iii) a + ( a . b ) = a + b (iv) a ( a + b ) = a.b f. Hukum dominansi (i) a.1 = a (ii) a+0 = a (iii) a+1 = 1 (iv) a . 0 = 0 g. Hukum involusi (i) (a) = a h. Hukum Komplementasi (i) a + a = 1 (ii) a . a = 0 i. Hukum distributif: (i) a + ( b . c ) = ( a + b ) ( a + c ) (ii) a ( b + c) = a . b + a . c j. Hukum De Morgan (i) (a + b) = a. b (ii) (a . b) = a + b
  • 15. x y z f(x,y,z) = xyz + x 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1
  • 17. x y z f=xyz + xyz + xyg g =xz + xy 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 0
  • 20. x y Minterm Maxterm Suku Lambang Suku Lambang 0 0 xy m0 x + y M0 0 1 xy m1 x + y M1 1 0 xy m2 x + y M2 1 1 xy m3 x + y M3
  • 21. x y z Minterm Maxterm Suku Lambang Suku Lambang 0 0 0 xyz m0 x + y + z M0 0 0 1 xyz m1 x + y + z M1 0 1 0 xyz m2 x + y + z M2 0 1 1 xyz m3 x + y + z M3 1 0 0 xyz m4 x + y + z M4 1 0 1 xyz m5 x + y + z M5 1 1 0 xyz m6 x + y + z M6 1 1 1 xyz m7 x + y + z M7
  • 22. x y z xyz xyz xyz f(x,y,z) 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1
  • 28. xyz xyz xyz xyz xyz xyz xyz xyz
  • 30. wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz