This document contains a trigonometry review appendix with 34 practice problems. It provides definitions and formulas for trigonometric functions like sine, cosine, and tangent. It includes problems calculating trig values given angles or sides of triangles, finding angles or sides given trig functions, and identifying periodic trig function values. The review covers trig identities, special angle values, and using trig in geometric problems involving right triangles.
1 of 6
Download to read offline
More Related Content
Appendix a page_524
1. January 27, 2005 11:58 l24-appa-sv Sheet number 1 Page number 524 black
APPENDIX A
Trigonometry Review
EXERCISE SET A
1. (a) 5/12 (b) 13/6 (c) /9 (d) 23/30
2. (a) 7/3 (b) /12 (c) 5/4 (d) 11/12
3. (a) 12 (b) (270/) (c) 288 (d) 540
4. (a) 18 (b) (360/) (c) 72 (d) 210
5. sin 慮 cos 慮 tan 慮 csc 慮 sec 慮 cot 慮
(a) 21/5 2/5 21/2 5/ 21 5/2 2/ 21
(b) 3/4 7/4 3/ 7 4/3 4/ 7 7/3
(c) 3/ 10 1/ 10 3 10/3 10 1/3
6. sin 慮 cos 慮 tan 慮 csc 慮 sec 慮 cot 慮
(a) 1/ 2 1/ 2 1 2 2 1
(b) 3/5 4/5 3/4 5/3 5/4 4/3
(c) 1/4 15/4 1/ 15 4 4/ 15 15
7. sin 慮 = 3/ 10, cos 慮 = 1/ 10 8. sin 慮 = 5/3, tan 慮 = 5/2
9. tan 慮 = 21/2, csc 慮 = 5/ 21 10. cot 慮 = 15, sec 慮 = 4/ 15
11. Let x be the length of the side adjacent to 慮, then cos 慮 = x/6 = 0.3, x = 1.8.
12. Let x be the length of the hypotenuse, then sin 慮 = 2.4/x = 0.8, x = 2.4/0.8 = 3.
13. 慮 sin 慮 cos 慮 tan 慮 csc 慮 sec 慮 cot 慮
(a) 225 1/ 2 1/ 2 1 2 2 1
(b) 210 1/2 3/2 1/ 3 2 2/ 3 3
(c) 5/3 3/2 1/2 3 2/ 3 2 1/ 3
(d) 3/2 1 0 1 0
14. 慮 sin 慮 cos 慮 tan 慮 csc 慮 sec 慮 cot 慮
(a) 330 1/2 3/2 1/ 3 2 2/ 3 3
(b) 120 3/2 1/2 3 2/ 3 2 1/ 3
(c) 9/4 1/ 2 1/ 2 1 2 2 1
(d) 3 0 1 0 1
524
3. January 27, 2005 11:58 l24-appa-sv Sheet number 3 Page number 526 black
526 Appendix A
27. (a) 慮 = /3 賊 2n and 慮 = 2/3 賊 2n, n = 0, 1, 2, . . .
(b) 慮 = /6 賊 2n and 慮 = 11/6 賊 2n, n = 0, 1, 2, . . .
28. sin 慮 = 3/5, cos 慮 = 4/5, tan 慮 = 3/4, csc 慮 = 5/3, sec 慮 = 5/4, cot 慮 = 4/3
29. sin 慮 = 2/5, cos 慮 = 21/5, tan 慮 = 2/ 21, csc 慮 = 5/2, sec 慮 = 5/ 21, cot 慮 = 21/2
30. (a) 慮 = /2 賊 2n, n = 0, 1, 2, . . . (b) 慮 = 賊2n, n = 0, 1, 2, . . .
(c) 慮 = /4 賊 n, n = 0, 1, 2, . . . (d) 慮 = /2 賊 2n, n = 0, 1, 2, . . .
(e) 慮 = 賊2n, n = 0, 1, 2, . . . (f ) 慮 = /4 賊 n, n = 0, 1, 2, . . .
31. (a) 慮 = 賊n, n = 0, 1, 2, . . . (b) 慮 = /2 賊 n, n = 0, 1, 2, . . .
(c) 慮 = 賊n, n = 0, 1, 2, . . . (d) 慮 = 賊n, n = 0, 1, 2, . . .
(e) 慮 = /2 賊 n, n = 0, 1, 2, . . . (f ) 慮 = 賊n, n = 0, 1, 2, . . .
32. Construct a right triangle with one angle equal to 17 , measure the lengths of the sides and
hypotenuse and use formula (6) for sin 慮 and cos 慮 to approximate sin 17 and cos 17 .
33. (a) s = r慮 = 4(/6) = 2/3 cm (b) s = r慮 = 4(5/6) = 10/3 cm
34. r = s/慮 = 7/(/3) = 21/ 35. 慮 = s/r = 2/5
1 2 1 1
36. 慮 = s/r so A = r 慮 = r2 (s/r) = rs
2 2 2
2 慮
37. (a) 2r = R(2 慮), r = R
2
4慮 慮2
(b) h = R2 r 2 = R2 (2 慮)2 R2 /(4 2 ) = R
2
38. The circumference of the circular base is 2r. When cut and 鍖attened, the cone becomes a circular
sector of radius L. If 慮 is the central angle that subtends the arc of length 2r, then 慮 = (2r)/L
so the area S of the sector is S = (1/2)L2 (2r/L) = rL which is the lateral surface area of the
cone.
39. Let h be the altitude as shown in the 鍖gure, then
1
h = 3 sin 60 = 3 3/2 so A = (3 3/2)(7) = 21 3/4. 3 h
2
60属
7
40. Draw the perpendicular from vertex C as shown in the 鍖gure, C
then
h = 9 sin 30 = 9/2, a = h/ sin 45 = 9 2/2,
9 h a
c1 = 9 cos 30 = 9 3/2, c2 = a cos 45 = 9/2,
45属
30属
c1 + c2 = 9( 3 + 1)/2, angle C = 180 (30 + 45 ) = 105 A
c1 c2
B
41. Let x be the distance above the ground, then x = 10 sin 67 9.2 ft.
42. Let x be the height of the building, then x = 120 tan 76 481 ft.
4. January 27, 2005 11:58 l24-appa-sv Sheet number 4 Page number 527 black
Exercise Set A 527
43. From the 鍖gure, h = x y but x = d tan 硫,
y = d tan 留 so h = d(tan 硫 tan 留).
h
x
y
硫 留
d
44. From the 鍖gure, d = x y but x = h cot 留,
y = h cot 硫 so d = h(cot 留 cot 硫),
d h
h= .
cot 留 cot 硫 硫
留
d y
x
45. (a) sin 2慮 = 2 sin 慮 cos 慮 = 2( 5/3)(2/3) = 4 5/9
(b) cos 2慮 = 2 cos2 慮 1 = 2(2/3)2 1 = 1/9
46. (a) sin(留 硫) = sin 留 cos 硫 cos 留 sin 硫 = (3/5)(1/ 5) (4/5)(2/ 5) = 1/ 5
(b) cos(留 + 硫) = cos 留 cos 硫 sin 留 sin 硫 = (4/5)(1/ 5) (3/5)(2/ 5) = 2/(5 5)
47. sin 3慮 = sin(2慮 + 慮) = sin 2慮 cos 慮 + cos 2慮 sin 慮 = (2 sin 慮 cos 慮) cos 慮 + (cos2 慮 sin2 慮) sin 慮
= 2 sin 慮 cos2 慮 + sin 慮 cos2 慮 sin3 慮 = 3 sin 慮 cos2 慮 sin3 慮; similarly, cos 3慮 = cos3 慮 3 sin2 慮 cos 慮
cos 慮 sec 慮 cos 慮 sec 慮 cos 慮 cos 慮
48. = = = = cos2 慮
1 + tan2 慮 sec2 慮 sec 慮 (1/ cos 慮)
cos 慮 tan 慮 + sin 慮 cos 慮(sin 慮/ cos 慮) + sin 慮
49. = = 2 cos 慮
tan 慮 sin 慮/ cos 慮
2 2 1 1
50. 2 csc 2慮 = = = = csc 慮 sec 慮
sin 2慮 2 sin 慮 cos 慮 sin 慮 cos 慮
sin 慮 cos 慮 sin2 慮 + cos2 慮 1 2 2
51. tan 慮 + cot 慮 = + = = = = = 2 csc 2慮
cos 慮 sin 慮 sin 慮 cos 慮 sin 慮 cos 慮 2 sin 慮 cos 慮 sin 2慮
sin 2慮 cos 2慮 sin 2慮 cos 慮 cos 2慮 sin 慮 sin 慮
52. = = = sec 慮
sin 慮 cos 慮 sin 慮 cos 慮 sin 慮 cos 慮
sin 慮 + cos 2慮 1 sin 慮 + (1 2 sin2 慮) 1 sin 慮(1 2 sin 慮)
53. = = = tan 慮
cos 慮 sin 2慮 cos 慮 2 sin 慮 cos 慮 cos 慮(1 2 sin 慮)
54. Using (47), 2 sin 2慮 cos 慮 = 2(1/2)(sin 慮 + sin 3慮) = sin 慮 + sin 3慮
55. Using (47), 2 cos 2慮 sin 慮 = 2(1/2)[sin(慮) + sin 3慮] = sin 3慮 sin 慮
sin(慮/2) 2 sin2 (慮/2) 1 cos 慮
56. tan(慮/2) = = =
cos(慮/2) 2 sin(慮/2) cos(慮/2) sin 慮
5. January 27, 2005 11:58 l24-appa-sv Sheet number 5 Page number 528 black
528 Appendix A
sin(慮/2) 2 sin(慮/2) cos(慮/2) sin 慮
57. tan(慮/2) = = 2 (慮/2)
=
cos(慮/2) 2 cos 1 + cos 慮
58. From (52), cos(/3 + 慮) + cos(/3 慮) = 2 cos(/3) cos 慮 = 2(1/2) cos 慮 = cos 慮
C
1
59. From the 鍖gures, area = hc but h = b sin A
2
1 a
so area = bc sin A. The formulas b h
2
1 1
area = ac sin B and area = ab sin C
2 2 A
c
B
follow by drawing altitudes from vertices B and C, respectively.
60. From right triangles ADC and BDC, C
h1 = b sin A = a sin B so a/ sin A = b/ sin B.
From right triangles AEB and CEB,
h1 a
h2 = c sin A = a sin C so a/ sin A = c/ sin C b
thus a/ sin A = b/ sin B = c/ sin C. E h2
D
A B
c
61. (a) sin(/2 + 慮) = sin(/2) cos 慮 + cos(/2) sin 慮 = (1) cos 慮 + (0) sin 慮 = cos 慮
(b) cos(/2 + 慮) = cos(/2) cos 慮 sin(/2) sin 慮 = (0) cos 慮 (1) sin 慮 = sin 慮
(c) sin(3/2 慮) = sin(3/2) cos 慮 cos(3/2) sin 慮 = (1) cos 慮 (0) sin 慮 = cos 慮
(d) cos(3/2 + 慮) = cos(3/2) cos 慮 sin(3/2) sin 慮 = (0) cos 慮 (1) sin 慮 = sin 慮
sin(留 + 硫) sin 留 cos 硫 + cos 留 sin 硫
62. tan(留 + 硫) = = , divide numerator and denominator by
cos(留 + 硫) cos 留 cos 硫 sin 留 sin 硫
sin 留 sin 硫
cos 留 cos 硫 and use tan 留 = and tan 硫 = to get (38);
cos 留 cos 硫
tan 留 + tan(硫) tan 留 tan 硫
tan(留 硫) = tan(留 + (硫)) = = because
1 tan 留 tan(硫) 1 + tan 留 tan 硫
tan(硫) = tan 硫.
63. (a) Add (34) and (36) to get sin(留 硫) + sin(留 + 硫) = 2 sin 留 cos 硫 so
sin 留 cos 硫 = (1/2)[sin(留 硫) + sin(留 + 硫)].
(b) Subtract (35) from (37). (c) Add (35) and (37).
A+B AB 1
64. (a) From (47), sin cos = (sin B + sin A) so
2 2 2
A+B AB
sin A + sin B = 2 sin cos .
2 2
(b) Use (49) (c) Use (48)
留硫 留+硫
65. sin 留 + sin(硫) = 2 sin cos , but sin(硫) = sin 硫 so
2 2
留+硫 留硫
sin 留 sin 硫 = 2 cos sin .
2 2
6. January 27, 2005 11:58 l24-appa-sv Sheet number 6 Page number 529 black
Exercise Set A 529
66. (a) From (34), C sin(留 + ) = C sin 留 cos + C cos 留 sin so C cos = 3 and C sin = 5,
square and add to get C 2 (cos2 + sin2 ) = 9 + 25, C 2 = 34. If C = 34 then cos = 3/ 34
and sin = 5/ 34 is the 鍖rst-quadrant angle for which tan = 5/3.
so
3 sin 留 + 5 cos 留 = 34 sin(留 + ).
(b) Follow the procedure of part (a) to get C cos = A and C sin = B, C = A2 + B 2 ,
tan = B/A where the quadrant in which lies is determined by the signs of A and B because
cos = A/C and sin = B/C, so A sin 留 + B cos 留 = A2 + B 2 sin(留 + ).
67. Consider the triangle having a, b, and d as sides. The angle formed by sides a and b is 慮 so
from the law of cosines, d2 = a2 + b2 2ab cos( 慮) = a2 + b2 + 2ab cos 慮, d = a2 + b2 + 2ab cos 慮.