ݺߣ

ݺߣShare a Scribd company logo
Lecture 9 & 10:
Stereo Vision
Professor Fei-Fei Li
Stanford Vision Lab
Lecture 9 & 10 -
Fei-Fei Li 1 21-0ct-14
Dimensionality Reduction Machine (3D to 2D)
30 world
Point of observation
20 image
Figures? Stephen E. Palmer, 2002
Fei-Fei Li Lecture 9 & 10 -
Real-world camera+ Real-world transformation
ݺߣ inspiration: S. Savarese
Fei-Fei Li Lecture 9 & 10 -
What we will learn today?
? Introduction to stereo vision
? Epipolar geometry: a gentle intro
? Parallel images & image rectification
? Solving the correspondence problem
? Homographic transformation
? Active stereo vision system
Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10
Lecture 9 & 10 - 21-0ct-14
Fei-Fei Li
What we will learn today?
? Introduction to stereo vision
? Epipolar geometry: a gentle intro
? Parallel images & image rectification
? Solving the correspondence problem
? Homographic transformation
? Active stereo vision system
Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10
Lecture 9 & 10 - 21-0ct-14
Fei-Fei Li
Recovering 3D from Images
? How can we automatically compute 3D geometry
from images?
- What cues in the image provide 3D information?
Real 30 world 20 image
Point of observation
Lecture 9 & 10 - 10 21-0ct-14
Fei-Fei Li
Visual Cues for 3D
? Shading
Merle Norman Cosmetics, LosAngeles
V )
Q)
>
ro
I
..,
.-t=
"'C
Q)
1...
u
Q)
"'C
V l
Lecture 9 & 10 - 11 21-0ct-14
Fei-Fei Li
Visual Cues for 3D
? Shading
V )
Q)
>
ro
? Texture
I
..,
.-t=
"'C
Q)
The Visual Cliff, by William Vandivert, 1960 1...
u
Q)
"'C
V l
Lecture 9 & 10 - 12 21-0ct-14
Fei-Fei Li
Visual Cues for 3D
? Shading
? Texture
? Focus V )
Q)
>
ro
I
..,
.-t=
"'C
Q)
From TheArt of Photography, Canon
1...
u
Q)
"'C
V l
Lecture 9 & 10 - 13 21-0ct-14
Fei-Fei Li
Visual Cues for 3D
? Shading
? Texture
? Focus
V )
Q)
>
ro
I
..,
.-t=
"'C
Q)
? Motion 1...
u
Q)
"'C
V l
Lecture 9 & 10 - 14 21-0ct-14
Fei-Fei Li
Visual Cues for 3D
? Shading
? Others:
- Highlights
- Shadows
- Silhouettes
- Inter-reflections
- Symmetry
- Light Polarization
? Texture
? Focus
? Motion
Shape From X
? X= shading, texture, focus, motion, ...
? We'll focus on the motion cue
V )
Q)
>
ro
I
..,
.-t=
"'C
Q)
1...
u
Q)
"'C
V l
Lecture 9 & 10 - 15 21-0ct-14
Fei-Fei Li
Stereo Reconstruction
? The Stereo Problem
- Shape from two (or more) images
- Biological motivation
. '
known
camera
viewpoints
. /
V )
Q)
>
ro
I
..,
.-t=
"'C
Q)
1...
u
Q)
"'C
V l
Lecture 9 & 10 - 16 21-0ct-14
Fei-Fei Li
Why do we have two eyes?
I I )
Q)
>
ro
I
....,
:t=
""C
Q)
lo...
vs.
u
Q)
""C
V l
Cyclope Odysseus
Lecture 9 & 1 0 -
Fei-Fei Li 17 21-0ct-14
1. Two is better than one
I I )
Q)
>
ro
I
....,
:t=
""C
Q)
lo...
u
Q)
""C
V l
Lecture 9 & 10 -
Fei-Fei Li 18 21-0ct-14
2. Depth from Convergence
d==
K - - d - - l l l - l
k ---------- d2---------
-
Human performance: up to 6-8feet
c
V l
Q)
>
ro
I
- ,
+ - '
""0
Q)
u
Q)
""0
V l
Lecture 9 & 10 -
Fei-Fei Li 1 21-0ct-14
What we will learn today?
? Introduction to stereo vision
? Epipolar geometry: a gentle intro
? Parallel images & image rectification
? Solving the correspondence problem
? Homographic transformation
? Active stereo vision system
Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10
Lecture 9 & 10 -
Fei-Fei Li 2 21-0ct-14
Epipolar geometry
0
? Epipolar Plane
? Baseline
? Epipolar Lines
0'
? Epipoles e, e'
=intersections of baseline with image planes
= projections of the other camera center
=vanishing points of camera motion direction
Lecture 9 & 10 -
Fei-Fei Li 21 21-0ct-14
Example: Converging image planes
Lecture 9 & 10 -
Fei-Fei Li 22 21-0ct-14
Epipolar Constraint
p
? Potential matches for p have to lie on the corresponding epipolar line/'.
? Potential matches for p' have to lie on the corresponding epipolar line/.
Lecture 9 & 10 - 24 21-0ct-14
Fei-Fei Li
Cross product as matrix multiplication
0
az
-ay
-az
0
ax
aY
-aX
0
bx
b
y
b
z
axb = = [ax]b
"skew symmetric matrix"
Lecture 9 & 10 - 21-0ct-14
28
Fei-Fei Li
Epipolar Constraint
? E p' is the epipolar line associated with p' (I= E p')
? E
Tp is the epipolar line associated with p (I'= E
Tp)
? Eis singular (rank two)
? Ee' =0 and E
Te =0
? Eis 3x3 matrix; 5 DOF
Lecture 9 & 10 - 21-0ct-14
30
Fei-Fei Li
What we will learn today?
? Introduction to stereo vision
? Epipolar geometry: a gentle intro
? Parallel images & image rectification
? Solving the correspondence problem
? Homographic transformation
? Active stereo vision system
Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10
Lecture 9 & 10 - 31 21-0ct-14
Fei-Fei Li
Simplest Case: Parallel images
? Image planes of cameras
are parallel to each other
and to the baseline
? Camera centers are at same
height
? Focal lengths are the same
V )
Q)
>
ro
I
......,
+-'
""C
Q)
u
Q)
""C
V )
Lecture 9 & 10 - 32 21-0ct-14
Fei-Fei Li
Triangulation --depth from disparity
p
z
0 Baseline 0 '
B
dz
.sparz.ty = u - u' =
B .f
- -
z
Disparity is inversely proportional to depth!
V l
Q)
>
ro
I
- ,
+ - '
""0
Q)
u
Q)
""0
V l
Lecture 9 & 10 - 21-0ct-14
36
Fei-Fei Li
Stereo image rectification
V )
Q)
>
ro
I
......,
+-'
""C
Q)
u
Q)
""C
V )
Lecture 9 & 10 -
Fei-Fei Li 37 21-0ct-14
Rectification example
Lecture 9 & 10 - 21-0ct-14
39
Fei-Fei Li
Application: view morphing
S.M. Seitz and C. R. Dyer, Proc. 5/GGRAPH 96, 1996, 21-30
I I I
Lecture 9 & 10 - 40 21-0ct-14
Fei-Fei Li
Application: view morphing
Lecture 9 & 10 - 41 21-0ct-14
Fei-Fei Li
Application: view morphing
Lecture 9 & 10 - 42 21-0ct-14
Fei-Fei Li
Application: view morphing
Lecture 9 & 10 - 43 21-0ct-14
Fei-Fei Li
Removing perspective distortion
- (rectification)
- - "
What we will learn today?
? Introduction to stereo vision
? Epipolar geometry: a gentle intro
? Parallel images & image rectification
? Solving the correspondence problem
? Homographic transformation
? Active stereo vision system
Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10
Lecture 9 & 10 - 45 21-0ct-14
Fei-Fei Li
Stereo matching:
solving the correspondence problem
? Hypothes is 1
o Hypothes is 2
o Hypothes is 3
oc
'
? Goal: finding matching points between two images
Lecture 9 & 10 - 46 21-0ct-14
Fei-Fei Li
Basic stereo matching algorithm
? For each pixel in the first image
- Find corresponding epipolar line in the right image
- Examine all pixels on the epipolar line and pick the best match
- Triangulate the matches to get depth information i
- ,
+ - '
""0
Q)
u
Q)
""0
V l
? Simplest case: epipolar lines are scanlines
- When does this happen?
Lecture 9 & 10 - 21-0ct-14
47
Fei-Fei Li
Basic stereo matching algorithm
? If necessary, rectify the two stereo images to transform
epipolar lines into scanlines
? For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the best match x'
- Compute disparity x-x' and set depth(x) = 1/(x-x')
Lecture 9 & 10 - 21-0ct-14
48
Fei-Fei Li
Correspondence problem
? Let's make some assumptions to simplify the
matching problem
- The baseline is relatively small (compared to the
depth of scene points)
- Then most scene points are visible in both views
- Also, matching regions are similar in appearance
V l
Q)
>
ro
I
- ,
+ - '
""0
Q)
u
Q)
""0
V l
Lecture 9 & 10 - 21-0ct-14
49
Fei-Fei Li
Correspondence search with similarity constraint
Left
Matching cost
? ݺߣ a window along the right scanline and
compare contents of that window with the
reference window in the left image
? Matching cost: SSD or normalized correlation
V l
Q)
>
ro
I
- ,
+ - '
""0
Q)
u
Q)
""0
V l
Lecture 9 & 10 - 50 21-0ct-14
Fei-Fei Li
Correspondence search with similarity constraint
Left
0
( f )
( f )
Lecture 9 & 10 - 51 21-0ct-14
Fei-Fei Li
Correspondence search with similarity constraint
Left
c
0
Lecture 9 & 10 - 52 21-0ct-14
Fei-Fei Li
Effect of window size
W==3
- Smaller window
+ More detail
? More noise
-Larger window
+ Smoother disparity maps
? Less detail
W==20
Lecture 9 & 10 - 53 21-0ct-14
Fei-Fei Li
The similarity constraint
? Corresponding regions in two images should be similar in
appearance
? ...and non-corresponding regions should be different
? When will the similarity constraint fail?
V l
Lecture 9 & 10 - 54 21-0ct-14
Fei-Fei Li
Q)
>
ro
I
- ,
+ - '
""0
Q)
u
Q)
""0
V l
Limitations of similarity constraint
Textureless surfaces Occlusions, repetition
V l
Q)
>
ro
I
- ,
+ - '
""0
Q)
u
Q)
""0
V l
Results with window search
Ground truth
Lecture 9 & 10 - 56 21-0ct-14
Fei-Fei Li
Better methods exist... (CS231a)
-
Graph cuts Ground truth
Y. Boykov, 0. Veksler, and R. Zabih,
FastApproximate Energy Minimization via Graph Cuts, PAMI 2001
Lecture 9 & 10 - 57 21-0ct-14
Fei-Fei Li
The role of the baseline
Small Baseline Large Baseline
?Small baseline:
?Large baseline:
large depth error
difficult search problem
ݺߣ credit: S. Seitz
Lecture 9 & 10 - 58 21-0ct-14
Fei-Fei Li
Problem for wide baselines: Foreshortening
l l'
? Matching with fixed-size windows will fail!
? Possible solution: adaptively vary window size
? Another solution: model-based stereo (CS231a)
ݺߣ credit: J. Hayes
Lecture 9 & 10 - 59 21-0ct-14
Fei-Fei Li
What we will learn today?
? Introduction to stereo vision
? Epipolar geometry: a gentle intro
? Parallel images
? Solving the correspondence problem
? Homographic transformation
? Active stereo vision system
Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10
Lecture 9 & 10 - 21-0ct-14
60
Fei-Fei Li
Reminder: transformations in 2D
SpeciaI case
from lecture 2
(planar rotation
& translation)
u'
v' -
1
u
v
1
u
v
1
R t
0 1
= H e
- 3 DOF
- Preserve distance (areas)
- Regulate motion
of rigid object
Fei-Fei Li Lecture 9 & 10 -
Reminder: transformations in 2D
Generic case
(rotation in 3D, scale
& translation)
u'
v' -
1
aI a2 a3
a4 as a6
a7 as a9
u
v
1
u
v
1
= H
- 8 DOF
- Preserve colinearity
Fei-Fei Li Lecture 9 & 10 -
Goal: estimate the homographic
transformation between two images
Assumption: Given a set of corresponding points.
Lecture 9 & 10 -
Fei-Fei Li 63 21-0ct-14
Goal: estimate the homographic
transformation between two images
Assumption: Given a set of corresponding points.
Question: How many points are needed? - - - ? At least 4 points
(8 equations)
Hint: DoF for H? 8!
Lecture 9 & 10 -
Fei-Fei Li 64 21-0ct-14
DLT algorithm (direct Linear Transformation)
Unknown [9x1]
Pi' xH pi =0
l
I
'
A. h = 0
1
I
- 
Function of
measurements
hl
h2
hl h2
h4 hs h
6
h7 h9
[2x9]
h=
H =
h9
 I
9x1
2independentequations
Lecture 9 & 10 -
Fei-Fei Li 21-0ct-14
66
DLT algorithm (direct Linear Transformation)
How to solve A 2 Nx 9 h 9x1 = 0 ?
Singular Value Decomposition (SVD)!
Lecture 9 & 10 -
Fei-Fei Li 21-0ct-14
68
DLT algorithm (direct Linear Transformation)
How to solve A 2 Nx 9 h 9x1 = 0 ?
Singular Value Decomposition (SVD)!
l
u 2 n x 9 L 9 x 9 V T
9x9
Last column of V gives h! ?
H!
I Why? See pag 593 of AZ I Lecture 9 & 10 -
Fei-Fei Li 21-0ct-14
69
DLT algorithm (direct Linear Transformation)
How to solve A 2 Nx 9 h 9x1 = 0 ?
[U,D,V] = svd(A,O);
x = V( : , end) ;
Lecture 9 & 10 -
Fei-Fei Li 70 21-0ct-14
Clarification about SVD
pmxn = U xn Dnxn ............. xn
/
Has n orthogonal
columns

Orthogonal
matrix
? This is one of the possible SVD decompositions
? This is typically used for efficiency
? The classic SVD is actually:
pmxn = IQ]mxm D mxniTi:n
/
orthogonal  Orthogonal
Lecture 9 & 10 -
Fei-Fei Li 71 21-0ct-14
Lecture 9 & 10 -
Fei-Fei Li 72 21-0ct-14
What we will learn today?
? Introduction to stereo vision
? Epipolar geometry: a gentle intro
? Parallel images & image rectification
? Solving the correspondence problem
? Homographic transformation
? Active stereo vision system
Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10
Lecture 9 & 10 -
Fei-Fei Li 73 21-0ct-14
Active stereo (shadows)
J. Bouguet & P. Perona, 99
S. Savarese, J. Bouguet & Perona, 00
Lecture 9 & 10 -
Fei-Fei Li 77 21-0ct-14
Active stereo (color-coded stripes)
Rapid shape acquisition: Projector+ stereo cameras
L.Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic
Programming. 3DPVT 2002
Lecture 9 & 10 - 79 21-0ct-14
Fei-Fei Li
Active stereo {stripe)
Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/
? Optical triangulation
Project a single stripe of laser light
Scan it across the surface of the object
This is a very precise version of structured light scanning
Lecture 9 & 10 - 21-0ct-14
80
Fei-Fei Li
Laser scanned models
The Digital Michelangelo Project, Levoy et al.
ݺߣ credit: S. Seitz
Lecture 9 & 10 - 81 21-0ct-14
Fei-Fei Li
Laser scanned models
The Digital Michelangelo Project, Levoy et al.
ݺߣ credit: S. Seitz
Lecture 9 & 10 - 21-0ct-14
82
Fei-Fei Li
Laser scanned models
The Digital Michelangelo Project, Levoy et al.
ݺߣ credit: S. Seitz
Fei-Fei Li Lecture 9 & 10 - 83 21-0ct-14
Laser scanned models
The Digital Michelangelo Project, Levoy et al.
ݺߣ credit: S. Seitz
Fei-Fei Li Lecture 9 & 10 - 84 21-0ct-14
Laser scanned models
1.0 mm resolution (56 million triangles)
The Digital Michelangelo Project, Levoy et al.
ݺߣ credit: S. Seitz
Fei-Fei Li Lecture 9 & 10 - 85 21-0ct-14
What we will learn today?
? Introduction to stereo vision
? Epipolar geometry: a gentle intro
? Parallel images & image rectification
? Solving the correspondence problem
? Homographic transformation
? Active stereo vision system
Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10
Lecture 9 & 10 - 21-0ct-14
86
Fei-Fei Li

More Related Content

Binder1.pptx

  • 1. Lecture 9 & 10: Stereo Vision Professor Fei-Fei Li Stanford Vision Lab Lecture 9 & 10 - Fei-Fei Li 1 21-0ct-14
  • 2. Dimensionality Reduction Machine (3D to 2D) 30 world Point of observation 20 image Figures? Stephen E. Palmer, 2002 Fei-Fei Li Lecture 9 & 10 -
  • 3. Real-world camera+ Real-world transformation ݺߣ inspiration: S. Savarese Fei-Fei Li Lecture 9 & 10 -
  • 4. What we will learn today? ? Introduction to stereo vision ? Epipolar geometry: a gentle intro ? Parallel images & image rectification ? Solving the correspondence problem ? Homographic transformation ? Active stereo vision system Reading: [HZ] Chapters: 4, 9, 11 [FP] Chapters: 10 Lecture 9 & 10 - 21-0ct-14 Fei-Fei Li
  • 5. What we will learn today? ? Introduction to stereo vision ? Epipolar geometry: a gentle intro ? Parallel images & image rectification ? Solving the correspondence problem ? Homographic transformation ? Active stereo vision system Reading: [HZ] Chapters: 4, 9, 11 [FP] Chapters: 10 Lecture 9 & 10 - 21-0ct-14 Fei-Fei Li
  • 6. Recovering 3D from Images ? How can we automatically compute 3D geometry from images? - What cues in the image provide 3D information? Real 30 world 20 image Point of observation Lecture 9 & 10 - 10 21-0ct-14 Fei-Fei Li
  • 7. Visual Cues for 3D ? Shading Merle Norman Cosmetics, LosAngeles V ) Q) > ro I .., .-t= "'C Q) 1... u Q) "'C V l Lecture 9 & 10 - 11 21-0ct-14 Fei-Fei Li
  • 8. Visual Cues for 3D ? Shading V ) Q) > ro ? Texture I .., .-t= "'C Q) The Visual Cliff, by William Vandivert, 1960 1... u Q) "'C V l Lecture 9 & 10 - 12 21-0ct-14 Fei-Fei Li
  • 9. Visual Cues for 3D ? Shading ? Texture ? Focus V ) Q) > ro I .., .-t= "'C Q) From TheArt of Photography, Canon 1... u Q) "'C V l Lecture 9 & 10 - 13 21-0ct-14 Fei-Fei Li
  • 10. Visual Cues for 3D ? Shading ? Texture ? Focus V ) Q) > ro I .., .-t= "'C Q) ? Motion 1... u Q) "'C V l Lecture 9 & 10 - 14 21-0ct-14 Fei-Fei Li
  • 11. Visual Cues for 3D ? Shading ? Others: - Highlights - Shadows - Silhouettes - Inter-reflections - Symmetry - Light Polarization ? Texture ? Focus ? Motion Shape From X ? X= shading, texture, focus, motion, ... ? We'll focus on the motion cue V ) Q) > ro I .., .-t= "'C Q) 1... u Q) "'C V l Lecture 9 & 10 - 15 21-0ct-14 Fei-Fei Li
  • 12. Stereo Reconstruction ? The Stereo Problem - Shape from two (or more) images - Biological motivation . ' known camera viewpoints . / V ) Q) > ro I .., .-t= "'C Q) 1... u Q) "'C V l Lecture 9 & 10 - 16 21-0ct-14 Fei-Fei Li
  • 13. Why do we have two eyes? I I ) Q) > ro I ...., :t= ""C Q) lo... vs. u Q) ""C V l Cyclope Odysseus Lecture 9 & 1 0 - Fei-Fei Li 17 21-0ct-14
  • 14. 1. Two is better than one I I ) Q) > ro I ...., :t= ""C Q) lo... u Q) ""C V l Lecture 9 & 10 - Fei-Fei Li 18 21-0ct-14
  • 15. 2. Depth from Convergence d== K - - d - - l l l - l k ---------- d2--------- - Human performance: up to 6-8feet c V l Q) > ro I - , + - ' ""0 Q) u Q) ""0 V l Lecture 9 & 10 - Fei-Fei Li 1 21-0ct-14
  • 16. What we will learn today? ? Introduction to stereo vision ? Epipolar geometry: a gentle intro ? Parallel images & image rectification ? Solving the correspondence problem ? Homographic transformation ? Active stereo vision system Reading: [HZ] Chapters: 4, 9, 11 [FP] Chapters: 10 Lecture 9 & 10 - Fei-Fei Li 2 21-0ct-14
  • 17. Epipolar geometry 0 ? Epipolar Plane ? Baseline ? Epipolar Lines 0' ? Epipoles e, e' =intersections of baseline with image planes = projections of the other camera center =vanishing points of camera motion direction Lecture 9 & 10 - Fei-Fei Li 21 21-0ct-14
  • 18. Example: Converging image planes Lecture 9 & 10 - Fei-Fei Li 22 21-0ct-14
  • 19. Epipolar Constraint p ? Potential matches for p have to lie on the corresponding epipolar line/'. ? Potential matches for p' have to lie on the corresponding epipolar line/. Lecture 9 & 10 - 24 21-0ct-14 Fei-Fei Li
  • 20. Cross product as matrix multiplication 0 az -ay -az 0 ax aY -aX 0 bx b y b z axb = = [ax]b "skew symmetric matrix" Lecture 9 & 10 - 21-0ct-14 28 Fei-Fei Li
  • 21. Epipolar Constraint ? E p' is the epipolar line associated with p' (I= E p') ? E Tp is the epipolar line associated with p (I'= E Tp) ? Eis singular (rank two) ? Ee' =0 and E Te =0 ? Eis 3x3 matrix; 5 DOF Lecture 9 & 10 - 21-0ct-14 30 Fei-Fei Li
  • 22. What we will learn today? ? Introduction to stereo vision ? Epipolar geometry: a gentle intro ? Parallel images & image rectification ? Solving the correspondence problem ? Homographic transformation ? Active stereo vision system Reading: [HZ] Chapters: 4, 9, 11 [FP] Chapters: 10 Lecture 9 & 10 - 31 21-0ct-14 Fei-Fei Li
  • 23. Simplest Case: Parallel images ? Image planes of cameras are parallel to each other and to the baseline ? Camera centers are at same height ? Focal lengths are the same V ) Q) > ro I ......, +-' ""C Q) u Q) ""C V ) Lecture 9 & 10 - 32 21-0ct-14 Fei-Fei Li
  • 24. Triangulation --depth from disparity p z 0 Baseline 0 ' B dz .sparz.ty = u - u' = B .f - - z Disparity is inversely proportional to depth! V l Q) > ro I - , + - ' ""0 Q) u Q) ""0 V l Lecture 9 & 10 - 21-0ct-14 36 Fei-Fei Li
  • 25. Stereo image rectification V ) Q) > ro I ......, +-' ""C Q) u Q) ""C V ) Lecture 9 & 10 - Fei-Fei Li 37 21-0ct-14
  • 26. Rectification example Lecture 9 & 10 - 21-0ct-14 39 Fei-Fei Li
  • 27. Application: view morphing S.M. Seitz and C. R. Dyer, Proc. 5/GGRAPH 96, 1996, 21-30 I I I Lecture 9 & 10 - 40 21-0ct-14 Fei-Fei Li
  • 28. Application: view morphing Lecture 9 & 10 - 41 21-0ct-14 Fei-Fei Li
  • 29. Application: view morphing Lecture 9 & 10 - 42 21-0ct-14 Fei-Fei Li
  • 30. Application: view morphing Lecture 9 & 10 - 43 21-0ct-14 Fei-Fei Li
  • 31. Removing perspective distortion - (rectification) - - "
  • 32. What we will learn today? ? Introduction to stereo vision ? Epipolar geometry: a gentle intro ? Parallel images & image rectification ? Solving the correspondence problem ? Homographic transformation ? Active stereo vision system Reading: [HZ] Chapters: 4, 9, 11 [FP] Chapters: 10 Lecture 9 & 10 - 45 21-0ct-14 Fei-Fei Li
  • 33. Stereo matching: solving the correspondence problem ? Hypothes is 1 o Hypothes is 2 o Hypothes is 3 oc ' ? Goal: finding matching points between two images Lecture 9 & 10 - 46 21-0ct-14 Fei-Fei Li
  • 34. Basic stereo matching algorithm ? For each pixel in the first image - Find corresponding epipolar line in the right image - Examine all pixels on the epipolar line and pick the best match - Triangulate the matches to get depth information i - , + - ' ""0 Q) u Q) ""0 V l ? Simplest case: epipolar lines are scanlines - When does this happen? Lecture 9 & 10 - 21-0ct-14 47 Fei-Fei Li
  • 35. Basic stereo matching algorithm ? If necessary, rectify the two stereo images to transform epipolar lines into scanlines ? For each pixel x in the first image - Find corresponding epipolar scanline in the right image - Examine all pixels on the scanline and pick the best match x' - Compute disparity x-x' and set depth(x) = 1/(x-x') Lecture 9 & 10 - 21-0ct-14 48 Fei-Fei Li
  • 36. Correspondence problem ? Let's make some assumptions to simplify the matching problem - The baseline is relatively small (compared to the depth of scene points) - Then most scene points are visible in both views - Also, matching regions are similar in appearance V l Q) > ro I - , + - ' ""0 Q) u Q) ""0 V l Lecture 9 & 10 - 21-0ct-14 49 Fei-Fei Li
  • 37. Correspondence search with similarity constraint Left Matching cost ? ݺߣ a window along the right scanline and compare contents of that window with the reference window in the left image ? Matching cost: SSD or normalized correlation V l Q) > ro I - , + - ' ""0 Q) u Q) ""0 V l Lecture 9 & 10 - 50 21-0ct-14 Fei-Fei Li
  • 38. Correspondence search with similarity constraint Left 0 ( f ) ( f ) Lecture 9 & 10 - 51 21-0ct-14 Fei-Fei Li
  • 39. Correspondence search with similarity constraint Left c 0 Lecture 9 & 10 - 52 21-0ct-14 Fei-Fei Li
  • 40. Effect of window size W==3 - Smaller window + More detail ? More noise -Larger window + Smoother disparity maps ? Less detail W==20 Lecture 9 & 10 - 53 21-0ct-14 Fei-Fei Li
  • 41. The similarity constraint ? Corresponding regions in two images should be similar in appearance ? ...and non-corresponding regions should be different ? When will the similarity constraint fail? V l Lecture 9 & 10 - 54 21-0ct-14 Fei-Fei Li Q) > ro I - , + - ' ""0 Q) u Q) ""0 V l
  • 42. Limitations of similarity constraint Textureless surfaces Occlusions, repetition V l Q) > ro I - , + - ' ""0 Q) u Q) ""0 V l
  • 43. Results with window search Ground truth Lecture 9 & 10 - 56 21-0ct-14 Fei-Fei Li
  • 44. Better methods exist... (CS231a) - Graph cuts Ground truth Y. Boykov, 0. Veksler, and R. Zabih, FastApproximate Energy Minimization via Graph Cuts, PAMI 2001 Lecture 9 & 10 - 57 21-0ct-14 Fei-Fei Li
  • 45. The role of the baseline Small Baseline Large Baseline ?Small baseline: ?Large baseline: large depth error difficult search problem ݺߣ credit: S. Seitz Lecture 9 & 10 - 58 21-0ct-14 Fei-Fei Li
  • 46. Problem for wide baselines: Foreshortening l l' ? Matching with fixed-size windows will fail! ? Possible solution: adaptively vary window size ? Another solution: model-based stereo (CS231a) ݺߣ credit: J. Hayes Lecture 9 & 10 - 59 21-0ct-14 Fei-Fei Li
  • 47. What we will learn today? ? Introduction to stereo vision ? Epipolar geometry: a gentle intro ? Parallel images ? Solving the correspondence problem ? Homographic transformation ? Active stereo vision system Reading: [HZ] Chapters: 4, 9, 11 [FP] Chapters: 10 Lecture 9 & 10 - 21-0ct-14 60 Fei-Fei Li
  • 48. Reminder: transformations in 2D SpeciaI case from lecture 2 (planar rotation & translation) u' v' - 1 u v 1 u v 1 R t 0 1 = H e - 3 DOF - Preserve distance (areas) - Regulate motion of rigid object Fei-Fei Li Lecture 9 & 10 -
  • 49. Reminder: transformations in 2D Generic case (rotation in 3D, scale & translation) u' v' - 1 aI a2 a3 a4 as a6 a7 as a9 u v 1 u v 1 = H - 8 DOF - Preserve colinearity Fei-Fei Li Lecture 9 & 10 -
  • 50. Goal: estimate the homographic transformation between two images Assumption: Given a set of corresponding points. Lecture 9 & 10 - Fei-Fei Li 63 21-0ct-14
  • 51. Goal: estimate the homographic transformation between two images Assumption: Given a set of corresponding points. Question: How many points are needed? - - - ? At least 4 points (8 equations) Hint: DoF for H? 8! Lecture 9 & 10 - Fei-Fei Li 64 21-0ct-14
  • 52. DLT algorithm (direct Linear Transformation) Unknown [9x1] Pi' xH pi =0 l I ' A. h = 0 1 I - Function of measurements hl h2 hl h2 h4 hs h 6 h7 h9 [2x9] h= H = h9 I 9x1 2independentequations Lecture 9 & 10 - Fei-Fei Li 21-0ct-14 66
  • 53. DLT algorithm (direct Linear Transformation) How to solve A 2 Nx 9 h 9x1 = 0 ? Singular Value Decomposition (SVD)! Lecture 9 & 10 - Fei-Fei Li 21-0ct-14 68
  • 54. DLT algorithm (direct Linear Transformation) How to solve A 2 Nx 9 h 9x1 = 0 ? Singular Value Decomposition (SVD)! l u 2 n x 9 L 9 x 9 V T 9x9 Last column of V gives h! ? H! I Why? See pag 593 of AZ I Lecture 9 & 10 - Fei-Fei Li 21-0ct-14 69
  • 55. DLT algorithm (direct Linear Transformation) How to solve A 2 Nx 9 h 9x1 = 0 ? [U,D,V] = svd(A,O); x = V( : , end) ; Lecture 9 & 10 - Fei-Fei Li 70 21-0ct-14
  • 56. Clarification about SVD pmxn = U xn Dnxn ............. xn / Has n orthogonal columns Orthogonal matrix ? This is one of the possible SVD decompositions ? This is typically used for efficiency ? The classic SVD is actually: pmxn = IQ]mxm D mxniTi:n / orthogonal Orthogonal Lecture 9 & 10 - Fei-Fei Li 71 21-0ct-14
  • 57. Lecture 9 & 10 - Fei-Fei Li 72 21-0ct-14
  • 58. What we will learn today? ? Introduction to stereo vision ? Epipolar geometry: a gentle intro ? Parallel images & image rectification ? Solving the correspondence problem ? Homographic transformation ? Active stereo vision system Reading: [HZ] Chapters: 4, 9, 11 [FP] Chapters: 10 Lecture 9 & 10 - Fei-Fei Li 73 21-0ct-14
  • 59. Active stereo (shadows) J. Bouguet & P. Perona, 99 S. Savarese, J. Bouguet & Perona, 00 Lecture 9 & 10 - Fei-Fei Li 77 21-0ct-14
  • 60. Active stereo (color-coded stripes) Rapid shape acquisition: Projector+ stereo cameras L.Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002 Lecture 9 & 10 - 79 21-0ct-14 Fei-Fei Li
  • 61. Active stereo {stripe) Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/ ? Optical triangulation Project a single stripe of laser light Scan it across the surface of the object This is a very precise version of structured light scanning Lecture 9 & 10 - 21-0ct-14 80 Fei-Fei Li
  • 62. Laser scanned models The Digital Michelangelo Project, Levoy et al. ݺߣ credit: S. Seitz Lecture 9 & 10 - 81 21-0ct-14 Fei-Fei Li
  • 63. Laser scanned models The Digital Michelangelo Project, Levoy et al. ݺߣ credit: S. Seitz Lecture 9 & 10 - 21-0ct-14 82 Fei-Fei Li
  • 64. Laser scanned models The Digital Michelangelo Project, Levoy et al. ݺߣ credit: S. Seitz Fei-Fei Li Lecture 9 & 10 - 83 21-0ct-14
  • 65. Laser scanned models The Digital Michelangelo Project, Levoy et al. ݺߣ credit: S. Seitz Fei-Fei Li Lecture 9 & 10 - 84 21-0ct-14
  • 66. Laser scanned models 1.0 mm resolution (56 million triangles) The Digital Michelangelo Project, Levoy et al. ݺߣ credit: S. Seitz Fei-Fei Li Lecture 9 & 10 - 85 21-0ct-14
  • 67. What we will learn today? ? Introduction to stereo vision ? Epipolar geometry: a gentle intro ? Parallel images & image rectification ? Solving the correspondence problem ? Homographic transformation ? Active stereo vision system Reading: [HZ] Chapters: 4, 9, 11 [FP] Chapters: 10 Lecture 9 & 10 - 21-0ct-14 86 Fei-Fei Li