際際滷

際際滷Share a Scribd company logo
A Distributed System
Using MS Kinect and Event Calculus
for Adaptive Physiotherapist Rehabilitation
Stefano Bragaglia
University of Bristol
Stefano Di Monte
University of Bologna
IIBM 2014
Birmingham, 2 July 2014
Paola Mello
University of Bologna
Introduction
 Population ageing fast: fewer young people to
support the elderly
 Life expectancy increases, as well as health
issues in older age
 Proven correlation between improperly
treated issues and consequent more serious
health problems
2 July 2014 IIBM 2014 2
Use Case Scenario
 Physiotherapy rehabilitation for elder people
 Hospitals and LHUs can be source of anxiety
 Very unbalanced patients/doctor ratio
 Exercises: generally low chances of a proper cure
 Frequent visits to costly physiotherapy centres
 Many causes lead to desist from a proper cure
 or insist with an improper cure!
2 July 2014 IIBM 2014 3
Our proposal
 Use non-invasive technology to virtually bring
the physiotherapist in the patients house
 Distributed system
 LHUs data server
 Physiotherapists application
 Patients device
2 July 2014 IIBM 2014 4
Computer Vision
 Human pose prediction with MS Kinect
 6 networks, one per limb/body part with Weka
 Multi-Layer Perceptrons *
 Decision Trees
 Logistic Model Trees
 Support Vector Machines *
 Input: the coordinates of the appropriate joints
 Output: a selection of partial frontal poses
 For each frame and network:
the ID of the predicted pose and its likelihood
2 July 2014 IIBM 2014 5
An Overlying Logic Framework
 Provides
 a convenient high-level way to describe exercises
 a low-level operational way to review them
 Based on
 Event Calculus: streamlined and resilient formalism to
reason about actions and their effects on a domain
 Expectations: formalism to declaratively describe
expected and/or undesired workflows within a
domain
 Implemented as forward rules with Drools
2 July 2014 IIBM 2014 6
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101
0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
Example
 Example: sit-to-stand
 Event: FrameAcquired (parametric)
 Fluents: leftLegPose, leftLegPoseScore, 
 Workflow: sit, stand, compute score
2 July 2014 IIBM 2014 7
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101
0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
Example: Sit-to-Stand(1/4)
on FrameAcquired( ... ,
leftLegPose, leftLegPoseScore,
rightLegPose, rightLegPoseScore, ... ) ... ,
set LeftLegPose to leftLegPose,
set LeftLegPoseScore to leftLegPoseScore, ... .
2 July 2014 IIBM 2014 8
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101
0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
Example: Sit-to-Stand(2/4)
on FrameAcquired
if SittingScore < 0
expect LeftLegPose == 1 and RightLegPose == 1
when fulfilled
set SittingScore
to LeftLegPoseScore * RightLegPoseScore
when violated
set SittingScore
to min(LeftLegPoseScore, RightLegPoseScore).
2 July 2014 IIBM 2014 9
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101
0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
Example: Sit-to-Stand(1/4)
on FrameAcquired
if SittingScore >= 0 and StandingScore < 0
expect LeftLegPose == 0 and RightLegPose == 0
before 2s
when fulfilled
set StandingScore
to LeftLegPoseScore * RightLegPoseScore
when violated
set StandingScore
to min(LeftLegPoseScore, RightLegPoseScore).
2 July 2014 IIBM 2014 10
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111
1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101
0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001
Example: Sit-to-Stand(4/4)
on FrameAcquired
if SittingScore >= 0 and StandingScore >= 0
and ExerciseScore < 0
set ExerciseScore
to SittingScore * StandingScore.
2 July 2014 IIBM 2014 11
Conclusions
 Contributions
 Distributed architecture to assist elder people in
physiotherapy rehabilitation
 Combines CV techniques with a powerful logic
framework
 Proof-of-concept, not trained with proper data
 Future works
 With the approval of an ethical committee,
creation of a postural dataset for data mining
2 July 2014 IIBM 2014 12
Ad

Recommended

Iotswc2016 - Microsoft - Healthcare track - lombardi - KHARE
Iotswc2016 - Microsoft - Healthcare track - lombardi - KHARE
allo75
Alexander Wolff & James Aymer UROP Poster FINAL
Alexander Wolff & James Aymer UROP Poster FINAL
James Aymer
Jancke kinect programming
Jancke kinect programming
apocalypse-021
PyKinect: Body Iteration Application Development Using Python
PyKinect: Body Iteration Application Development Using Python
pycontw
Enhancing the measurement of clinical outcomes using Microsoft Kinect choices...
Enhancing the measurement of clinical outcomes using Microsoft Kinect choices...
Interactive Technologies and Games: Education, Health and Disability
Math1003 1.10 - Binary to Hex Conversion
Math1003 1.10 - Binary to Hex Conversion
gcmath1003
Microsoft 'Kinect' as a Stroke Rehabilitation tool for Patients suffering fro...
Microsoft 'Kinect' as a Stroke Rehabilitation tool for Patients suffering fro...
Interactive Technologies and Games: Education, Health and Disability
Evaluating the Microsoft Kinect for use in Upper Extremity Rehabilitation Fol...
Evaluating the Microsoft Kinect for use in Upper Extremity Rehabilitation Fol...
Interactive Technologies and Games: Education, Health and Disability
Defense mechanisms
Defense mechanisms
Jumana Al Zainal
Master Thesis presentation
Master Thesis presentation
Bogdan Vasilescu
Proposal Defense Power Point
Proposal Defense Power Point
jamathompson
My Thesis Defense Presentation
My Thesis Defense Presentation
David Onoue
Powerpoint presentation M.A. Thesis Defence
Powerpoint presentation M.A. Thesis Defence
Catie Chase
Dissertation oral defense presentation
Dissertation oral defense presentation
Dr. Naomi Mangatu
Rupa Patel's Ph.D. Dissertation Defense, UW Biomedical & Health Informatics
Rupa Patel's Ph.D. Dissertation Defense, UW Biomedical & Health Informatics
Rupa Patel
Kinect
Kinect
uzumakieha
Thesis Powerpoint
Thesis Powerpoint
neha47
Emerging technologies in physical therapy and rehabilitation: 10 opportunitie...
Emerging technologies in physical therapy and rehabilitation: 10 opportunitie...
Healthstartup
A Study in (P)rose
A Study in (P)rose
Stefano Bragaglia
ILP 2014 - Nonmonotonic Learning in Large Biological Network
ILP 2014 - Nonmonotonic Learning in Large Biological Network
Stefano Bragaglia
Stefano Bragaglia CV (January 2014)
Stefano Bragaglia CV (January 2014)
Stefano Bragaglia
ePolicy's internal GlobalOpt webapp
ePolicy's internal GlobalOpt webapp
Stefano Bragaglia
Bolognese sauce
Bolognese sauce
Stefano Bragaglia
RTAI - Earliest Deadline First
RTAI - Earliest Deadline First
Stefano Bragaglia
Approximate Inference for Logic Programs with Annotated Disjunctions (RCRA 2009)
Approximate Inference for Logic Programs with Annotated Disjunctions (RCRA 2009)
Stefano Bragaglia
Stefano Bragaglia MSc Thesis, awarded as Best Italian thesis in AI 2009/2010
Stefano Bragaglia MSc Thesis, awarded as Best Italian thesis in AI 2009/2010
Stefano Bragaglia
Ontology development
Ontology development
Stefano Bragaglia
Introducing PRSs and Drools (in Italian)
Introducing PRSs and Drools (in Italian)
Stefano Bragaglia
Promotional poster for the ePolicy project
Promotional poster for the ePolicy project
Stefano Bragaglia

More Related Content

Viewers also liked (10)

Defense mechanisms
Defense mechanisms
Jumana Al Zainal
Master Thesis presentation
Master Thesis presentation
Bogdan Vasilescu
Proposal Defense Power Point
Proposal Defense Power Point
jamathompson
My Thesis Defense Presentation
My Thesis Defense Presentation
David Onoue
Powerpoint presentation M.A. Thesis Defence
Powerpoint presentation M.A. Thesis Defence
Catie Chase
Dissertation oral defense presentation
Dissertation oral defense presentation
Dr. Naomi Mangatu
Rupa Patel's Ph.D. Dissertation Defense, UW Biomedical & Health Informatics
Rupa Patel's Ph.D. Dissertation Defense, UW Biomedical & Health Informatics
Rupa Patel
Kinect
Kinect
uzumakieha
Thesis Powerpoint
Thesis Powerpoint
neha47
Emerging technologies in physical therapy and rehabilitation: 10 opportunitie...
Emerging technologies in physical therapy and rehabilitation: 10 opportunitie...
Healthstartup
Master Thesis presentation
Master Thesis presentation
Bogdan Vasilescu
Proposal Defense Power Point
Proposal Defense Power Point
jamathompson
My Thesis Defense Presentation
My Thesis Defense Presentation
David Onoue
Powerpoint presentation M.A. Thesis Defence
Powerpoint presentation M.A. Thesis Defence
Catie Chase
Dissertation oral defense presentation
Dissertation oral defense presentation
Dr. Naomi Mangatu
Rupa Patel's Ph.D. Dissertation Defense, UW Biomedical & Health Informatics
Rupa Patel's Ph.D. Dissertation Defense, UW Biomedical & Health Informatics
Rupa Patel
Thesis Powerpoint
Thesis Powerpoint
neha47
Emerging technologies in physical therapy and rehabilitation: 10 opportunitie...
Emerging technologies in physical therapy and rehabilitation: 10 opportunitie...
Healthstartup

More from Stefano Bragaglia (11)

A Study in (P)rose
A Study in (P)rose
Stefano Bragaglia
ILP 2014 - Nonmonotonic Learning in Large Biological Network
ILP 2014 - Nonmonotonic Learning in Large Biological Network
Stefano Bragaglia
Stefano Bragaglia CV (January 2014)
Stefano Bragaglia CV (January 2014)
Stefano Bragaglia
ePolicy's internal GlobalOpt webapp
ePolicy's internal GlobalOpt webapp
Stefano Bragaglia
Bolognese sauce
Bolognese sauce
Stefano Bragaglia
RTAI - Earliest Deadline First
RTAI - Earliest Deadline First
Stefano Bragaglia
Approximate Inference for Logic Programs with Annotated Disjunctions (RCRA 2009)
Approximate Inference for Logic Programs with Annotated Disjunctions (RCRA 2009)
Stefano Bragaglia
Stefano Bragaglia MSc Thesis, awarded as Best Italian thesis in AI 2009/2010
Stefano Bragaglia MSc Thesis, awarded as Best Italian thesis in AI 2009/2010
Stefano Bragaglia
Ontology development
Ontology development
Stefano Bragaglia
Introducing PRSs and Drools (in Italian)
Introducing PRSs and Drools (in Italian)
Stefano Bragaglia
Promotional poster for the ePolicy project
Promotional poster for the ePolicy project
Stefano Bragaglia
ILP 2014 - Nonmonotonic Learning in Large Biological Network
ILP 2014 - Nonmonotonic Learning in Large Biological Network
Stefano Bragaglia
Stefano Bragaglia CV (January 2014)
Stefano Bragaglia CV (January 2014)
Stefano Bragaglia
ePolicy's internal GlobalOpt webapp
ePolicy's internal GlobalOpt webapp
Stefano Bragaglia
RTAI - Earliest Deadline First
RTAI - Earliest Deadline First
Stefano Bragaglia
Approximate Inference for Logic Programs with Annotated Disjunctions (RCRA 2009)
Approximate Inference for Logic Programs with Annotated Disjunctions (RCRA 2009)
Stefano Bragaglia
Stefano Bragaglia MSc Thesis, awarded as Best Italian thesis in AI 2009/2010
Stefano Bragaglia MSc Thesis, awarded as Best Italian thesis in AI 2009/2010
Stefano Bragaglia
Introducing PRSs and Drools (in Italian)
Introducing PRSs and Drools (in Italian)
Stefano Bragaglia
Promotional poster for the ePolicy project
Promotional poster for the ePolicy project
Stefano Bragaglia
Ad

A Distributed System Using MS Kinect and Event Calculus for Adaptive Physiotherapist Rehabilitation

  • 1. A Distributed System Using MS Kinect and Event Calculus for Adaptive Physiotherapist Rehabilitation Stefano Bragaglia University of Bristol Stefano Di Monte University of Bologna IIBM 2014 Birmingham, 2 July 2014 Paola Mello University of Bologna
  • 2. Introduction Population ageing fast: fewer young people to support the elderly Life expectancy increases, as well as health issues in older age Proven correlation between improperly treated issues and consequent more serious health problems 2 July 2014 IIBM 2014 2
  • 3. Use Case Scenario Physiotherapy rehabilitation for elder people Hospitals and LHUs can be source of anxiety Very unbalanced patients/doctor ratio Exercises: generally low chances of a proper cure Frequent visits to costly physiotherapy centres Many causes lead to desist from a proper cure or insist with an improper cure! 2 July 2014 IIBM 2014 3
  • 4. Our proposal Use non-invasive technology to virtually bring the physiotherapist in the patients house Distributed system LHUs data server Physiotherapists application Patients device 2 July 2014 IIBM 2014 4
  • 5. Computer Vision Human pose prediction with MS Kinect 6 networks, one per limb/body part with Weka Multi-Layer Perceptrons * Decision Trees Logistic Model Trees Support Vector Machines * Input: the coordinates of the appropriate joints Output: a selection of partial frontal poses For each frame and network: the ID of the predicted pose and its likelihood 2 July 2014 IIBM 2014 5
  • 6. An Overlying Logic Framework Provides a convenient high-level way to describe exercises a low-level operational way to review them Based on Event Calculus: streamlined and resilient formalism to reason about actions and their effects on a domain Expectations: formalism to declaratively describe expected and/or undesired workflows within a domain Implemented as forward rules with Drools 2 July 2014 IIBM 2014 6
  • 7. 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 Example Example: sit-to-stand Event: FrameAcquired (parametric) Fluents: leftLegPose, leftLegPoseScore, Workflow: sit, stand, compute score 2 July 2014 IIBM 2014 7
  • 8. 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 Example: Sit-to-Stand(1/4) on FrameAcquired( ... , leftLegPose, leftLegPoseScore, rightLegPose, rightLegPoseScore, ... ) ... , set LeftLegPose to leftLegPose, set LeftLegPoseScore to leftLegPoseScore, ... . 2 July 2014 IIBM 2014 8
  • 9. 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 Example: Sit-to-Stand(2/4) on FrameAcquired if SittingScore < 0 expect LeftLegPose == 1 and RightLegPose == 1 when fulfilled set SittingScore to LeftLegPoseScore * RightLegPoseScore when violated set SittingScore to min(LeftLegPoseScore, RightLegPoseScore). 2 July 2014 IIBM 2014 9
  • 10. 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 Example: Sit-to-Stand(1/4) on FrameAcquired if SittingScore >= 0 and StandingScore < 0 expect LeftLegPose == 0 and RightLegPose == 0 before 2s when fulfilled set StandingScore to LeftLegPoseScore * RightLegPoseScore when violated set StandingScore to min(LeftLegPoseScore, RightLegPoseScore). 2 July 2014 IIBM 2014 10
  • 11. 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 0111 1001 1001 0101 0111 1001 1001 0101 0111 1001 Example: Sit-to-Stand(4/4) on FrameAcquired if SittingScore >= 0 and StandingScore >= 0 and ExerciseScore < 0 set ExerciseScore to SittingScore * StandingScore. 2 July 2014 IIBM 2014 11
  • 12. Conclusions Contributions Distributed architecture to assist elder people in physiotherapy rehabilitation Combines CV techniques with a powerful logic framework Proof-of-concept, not trained with proper data Future works With the approval of an ethical committee, creation of a postural dataset for data mining 2 July 2014 IIBM 2014 12

Editor's Notes

  • #7: 2 concepts: event, fluent 1 core axioms: smtg true if it was true or smtg else made it true and notg made it false in the mean while Corollary axioms to set the effect-cause relationship between events and fluents 3 modes: abductive, deductive, inductive Expectations: triggering event, optional conditional state, goal state and a deadline to predicate on sequence of domain states during evolution