This document discusses bridging collaborative tagging systems and semantic web technologies. It describes how folksonomies generated through social tagging have limitations like lack of semantics and standardization. Methods are proposed to structure folksonomies by involving users and using automatic processing to extract tag semantics. An example scenario of managing an academic document corpus with folksonomies is provided. The document also outlines a lifecycle approach to enrich folksonomies by adding user-generated structure and detecting conflicts before achieving a global structured folksonomy.
1 of 45
Downloaded 25 times
More Related Content
Bridging Social Web and Sem Web : 2 application cases in the field of sustainable developpment
1. From
folksonomies
to
structured
knowledge
representations:
bridging
Collaborative
Web
and
Semantic
Web
Des
folksonomies
aux
repr辿sentations
structur辿es
de
connaissances:
faire
le
pont
entre
Web
Collaboratif
et
Web
S辿mantique
Freddy
Limpens
fdy@pl-足area.net
h0p://pl-足area.net
A D B S
/
C o o p 辿 r a - o n
&
D 辿 v e l o p p e m e n t
A t e l i e r
W e b
S 辿 m a n - q u e
e t
D 辿 v e l o p p e m e n t
D u r a b l e
3 1 . 0 1 . 2 0 1 1
1
2. From
social
tagging
to
folksonomies
Tags
freely
associated
to
resources
collected
and
shared
on
the
web
2
3.
resul=ng
in
FO LKSO NO M IES
A
mass
of
users
for
a
mass
of
resources
3
9. State
of
the
art
Involving
users
in
tags
structuring:
≒ Simple
syntax
to
structure
tags
(Huyn-足Kim
Bang
et
al.
2008)
≒ Crowdsourcing
strategy
to
validate
tag-足
concepts
mapping
(Lin
et
al.
2010)
pollutant Energy
related related
pollution
has narrower
Soil pollutions
9
10. State
of
the
art
Automa-c
extrac-on
of
tag
seman-cs:
Energy
pollutant
related
related
pollution
has narrower
Soil pollutions
10
11. Tags
and
Seman-c
Web
models
TAGS
+
SCOT
+
SIOC
+
FOAF
for
tags
and
tagging
:
tags:Tagging
tags:taggedBy
foaf:Agent
#11111
#freddy.limpens
tags:associatedTag
tags:taggedResource
scot:Tag
sioc:Item
#wind-足energy
h0p://www.windenergy.com
11
12. Tags
and
Seman-c
Web
models
What
is
a
tagging
?
"nature"!
(1)
(2)
(3)
picture
shows
"nature"
place
located
l:england
edi=ng
makes
me
:
)
Tagging
=
linking
a
resource
with
a
sign
12
13. Tags
and
Seman-c
Web
models
NiceTag
(Monnin
et
al,
2010):
Tagging
as
named
graphs*
nt:ManualTagAc=on
(named
graph)
nt:TaggedResource
nt:isAbout
scot:Tag
h0p://www.windenergy.com
#wind-足energy
sioc:has_creator
sioc:has_container
sioc:UserAccount
sioc:Container
freddy
delicious.com
*Carrol
et
al.
(2005)
13
14. Tags
and
Seman-c
Web
models
2
complementary
seman=c
enrichment:
environment
renewable
energy
related
has
broader
wind-足energy
close
match
has
narrower
windenergy
wind
turbine
Structuring tags as in a thesaurus (SKOS)
14
15. 2. 1st
Applica-on
case
:
Corpus
management
at
ADEME
15
16. Ademe
scenario
Public
audience
Experts
read
+
tag
produce
docs
Archivists
centralize
+
tag
+
tag
16
19. 1.
String-足based
metrics
pollution Soil pollutions
=> 束 pollution 損 broader than 束 soil pollutions 損
pollution pollutant
=> 束 pollution 損 related to 束 pollutant 損
19
20. 3.
User-足based
associa-on
renewable
energy
wind-足energy
Claire
Alex
Anne
Delphine
Monique
Hyponym
rela=ons
(broader/narrower):
束
renewable
energy
損
broader
than
束
wind-足energy
損
20
34. Enriching
individual
points
of
view
Integra=ng
others'
contribu=ons:
Anne
is
looking
for
1. Current
user
-足>
"Anne"
resources
tagged
2. ReferentUser
(e.g.
archivists)
"environnement"
3. Con鍖ictSolver
(sohware
agent)
4. Other
individual
users
5. Automatons
(metrics)
domaines
environnementaux
BROADER
RELATED
Search:
environnement
NARROWER
CLOSE
MATCH
preoccupa=on
environnementales
environmental
grenelle
de
l
environnement
environment
competences
environnementales
34
35. 2. 2nd
Applica-on
case
:
Leveraging
the
reuse
of
2nd
hand
objects
35
36. Paris
How
will
I
get
rid
of
all
these
rusty
co鍖ee
makers??
Nice
38. Seman-cally
Enhanced
catalog
The goal :
Finding semantically
? Related tags
? To enhance searching
?
coffee maker
39. Seman-cally
Enhanced
catalog
The idea :
Mapping tags
With ontologies concepts
Hot liquid
container
coffee pot
coffee maker
tea pot
= subClassOf
40. Seman-cally
Enhanced
catalog
1.
The
user
enter
"co鍖ee
maker"
Results for "coffee maker":
coffee maker
2.
The
system
suggests
addi=onal
results
thanks
to
seman=c
rela=ons
Related results :
Results for "tea pot":
Results for "coffee pot":
42. What
we
do
:
Help
online
communi=es
environment
renewable
energy
related
has
broader
wind-足energy
structure
their
tags
related
has
narrower
sustainability
wind
turbine
42
43. Our
contribu-ons:
An
approach
to
bridge
tagging
with
Seman-c
Web:
Automa-c
processing
of
tags:
User
interface
to
capture
tag
structuring
embedded
in
every-足day
tasks
Implementa-on
within
ISICIL
solu=on
(tagging
server)
43
44. Future
work
≒ 1st
scenario:
≒ More
user
interfaces
≒ test
within
ISICIL
(ANR)
project
≒ Mul=linguism
≒ 2nd
scenario:
≒ op=miza=on
of
storage
in
the
reuse
of
valued
waste
≒ generic
applica=ons
44
45. Thank
you
for
your
aden-on
!
me
:
freddy.limpens@inria.fr
http://www-sop.inria.fr/members/Freddy.Limpens
my
advisors
:
Fabien
Gandon
:
fabien.gandon@inria.fr
Michel
Bu鍖a
:
buffa@unice.fr
ISICIL
team
:
http://isicil.inria.fr
45