際際滷

際際滷Share a Scribd company logo
CHNG VI: PHNG TRNH ANG CAP
2 2
asin u bsinu cosu ccos u d+ + =
Ca湛ch gia短i :
( )T狸m nghie辰m u k lu湛c 単o湛 cosu 0 va淡 sinu 1
2

 = +  = = 賊
2
Chia hai ve叩 ph旦担ng tr狸nh cho cos u 0 ta 単旦担誰c ph旦担ng tr狸nh : 
( )2 2
atg u btgu c d 1 tg u+ + = +
a谷t ta co湛 ph旦担ng tr狸nh :t tgu=
( ) 2
a d t bt c d 0 + +  =
Gia短i ph旦担ng tr狸nh t狸m 単旦担誰c t = tgu
Ba淡i 127 : Gia短i ph旦担ng tr狸nh
( )2 2
cos x 3 sin 2x 1 sin x * = +
V狸 cosx = 0 kho但ng la淡 nghie辰m ne但n
Chia hai ve叩 cu短a (*) cho 2
cos 0 ta 単旦担誰c
( ) ( )2 2
* 1 2 3tgx 1 tg x tg x  = + +
a谷t t = tgx ta co湛 ph旦担ng tr狸nh :
2
2t 2 3t 0+ =
t 0 t 3 =  = 
Va辰y ( )*

 = =   =  =  +  tgx 0 hay tgx 3 x k hay x k , k
3
Ba淡i 128 : Gia短i ph旦担ng tr狸nh
( )3 3 2
cos x 4 sin x 3cos x sin x sin x 0 *  + =
 Khi x k th狸 cos x 0va淡 sin x
2

= +  = = 賊1
th狸 (*) vo但 nghie辰m
 Do kho但ng la淡 nghie辰m ne但n chia hai ve叩 cu短a (*) cho cos3
x=cos x 0
ta co湛 (*) ( )3 2 2
1 4tg x 3tg x tgx 1 tg x 0   + + =
( )( )
 +   =
 +  =
 =   = 賊
 
 =  +   = 賊 +  
3 2
2
3tg x 3tg x tgx 1 0
tgx 1 3tg x 1 0
3
tgx 1 tgx
3
x k x k , k
4 6
Ba淡i 129 : Gia短i ph旦担ng tr狸nh
( )4 2 2 4
3cos x 4 sin x cos x sin x 0 * + =
Do cosx = 0 kho但ng la淡 nghie辰m ne但n chia hai ve叩 cu短a (*) cho 4
cos x 0
Ta co湛 : (*) 2 4
3 4tg x tg x 0  + =
 =  =
   
 = 賊 = 賊  = 賊  
  
 
 = 賊 +   = 賊 +  



2 2
tg x 1 tg x 3
tgx 1 tg tgx tg
4 3
x k x k , k
4 3
Ba淡i 130 : Gia短i ph旦担ng tr狸nh ( )sin 2x 2tgx 3 *+ =
Chia hai ve叩 cu短a (*) cho 2
cos x 0 ta 単旦担誰c
(*) 2 2
2sin x cos x 2tgx 3
cos x cos x cos x
 + = 2
( ) ( )2 2
2tgx 2tgx 1 tg x 3 1 tg x + + = +
3 2
t tgx
2t 3t 4t 3 0
=ァ
 ィ
 +  =ゥ
( )( )
=ァェ
 ィ
  +ェゥ
2
t tgx
t 1 2t t 3 0=
 =

 = +  
tgx 1
x k , k
4
Ba淡i 131 : Gia短i ph旦担ng tr狸nh
( )3
sin x sin 2x sin 3x 6cos x *+ =
( ) 2 3
* 2sin x cos x 3sin x 4sin x 6cos x +  = 3
( ) = = 賊Khi cos x 0 ( sin x 1) th狸 * vo但 nghie辰m
 Chia hai ve叩 ph旦担ng tr狸nh (*) cho 3
cos x 0 ta 単旦担誰c
( )* 
2 3
2 2
2sin x 3sin x 1 sin x
. 4
cos x cos x cos x cos x
+  3
6=
( )
( )( )
 + +  =
   + =
   =
 = = 留  = 賊

 = 留 +   = 賊 +   留 =
2 2 3
3 2
2
2tg x 3tgx 1 tg x 4tg x 6
tg x 2tg x 3tgx 6 0
tgx 2 tg x 3 0
tgx 2 tg tgx 3
x k x k , k ( v担湛i tg
3
2)
Ba淡i 132 : (e thi tuye奪n sinh a誰i ho誰c kho叩i A, na棚m 2003)
Gia短i ph旦担ng tr狸nh
( )2cos2x 1
cot gx 1 sin x sin2x *
1 tgx 2
 = + 
+
ieu kie辰n sin2x 0 va淡 tgx 1  
Ta co湛 :
( )2 22 2 cos x cos x sin xcos2x cos x sin x
sin x1 tgx cos x sin x1
cos x

= =
+ ++
( ) (=  =  +cos x cos x sin x do tgx 1 ne但n, sin x cos x 0)
Do 単o湛 : ( ) ( )2 2cos x 1
* 1 cos x sin x cos x sin x sin 2x
sin x 2
  =  + 
( ) ( )
( )

 = 
  = 
  = = 
2
cos x sin x
1 sin 2x
sin x
cos x sin x sin x cos x sin x
cos x sin x 0 hay 1 sin x cos x sin x (**)
( )
( )
= 。
「
「 =  
「」
2
2
tgx 1 nha辰n so v担湛i tgx 1
1 sin x
tg x do cos x 0
cos xcos x

( )
( )
。
= +  「
「
 + =「」

 = +   
2
x k , k
4
2tg x tgx 1 0 vo但 nghie辰m
x k , k nha辰n do sin 2x 0
4
L旦u y湛 : co湛 the奪 la淡m ca湛ch kha湛c
( ) ( )
1 1
* * 1 sin 2x 1 cos2x
2 2
  +  =0
 = +
 
 = + 
 
3 sin 2x cos 2x
3 2 sin 2x : vo但 nghie辰m
4
Ba淡i 133 : Gia短i ph旦担ng tr狸nh ( )sin 3x cos3x 2cos x 0 *+ + =
( ) ( ) ( )3 3
* 3sin x 4sin x 4 cos x 3cos x 2cos x  +  + 0=
=3 3
3sin x 4sin x 4cos x cos x 0  + 
V狸 cosx = 0 kho但ng la淡 nghie辰m ne但n chia hai ve叩 ph旦担ng tr狸nh cho ta
単旦担誰c
3
cos x 0
( ) ( ) ( )2 3 2
* 3tgx 1 tg x 4tg x 4 1 tg x 0 +  +  + =
( )( )
   + + =
=ァ
 ィ
+   =ゥ
=ァェ
 ィ
+  =ェゥ
 =   = 賊
 
 =  +   = 賊 +  
3 2
3 2
2
tg x tg x 3tgx 3 0
t tgx
t t 3t 3 0
t tgx
t 1 t 3 0
tgx 1 tgx 3
x k x k , k
4 3
Ba淡i 134 : Gia短i ph旦担ng tr狸nh ( )3 5sin4x.cos x
6sin x 2cos x *
2cos2x
 =
ieu kie辰n : 2 2
cos2x 0 cos x sin x 0 tgx 1      賊
Ta co湛 : (*)
3 10sin 2x cos2x cos x
6sin x 2cos x
2cos2x
cos2x 0
ァ
 =ェ
 ィ
ェ ゥ
3
6sin x 2cos x 5sin 2x cos x
tgx 1
ァ  =
 ィ
 賊ゥ
( )3 2
6sin x 2cos x 10sin x cos x * *
tgx 1
ァ  =ェ
 ィ
 賊ェゥ
Do cosx = 0 kho但ng la淡 nghie辰m cu短a (**), chia hai ve叩 ph旦担ng tr狸nh (**) cho
ta 単旦担誰c3
cos x
( ) 2
6tgx
2 10tgx
* * cos x
tgx 1
ァ
 =ェ
 ィ
ェ  賊ゥ
( )2
t tgx v担湛i t 1
6t 1 t 2 10t
= ァェ
 ィ
+  =ェゥ
賊
=  賊 =  賊ァ ァ
 ィ ィ
  =  + + =ゥ ゥ
3 2
t tgx v担湛i t 1 t tgx v担湛i t 1
3t 2t 1 0 (t 1) (3t 3t 1) 0
=  賊ァ
 ィ
=ゥ
t tgx v担湛i t 1
: vo但 nghie辰m
t 1
Ba淡i 135 : Gia短i ph旦担ng tr狸nh ( )3
sin x 4 sin x cos x 0 * + =
 V狸 cosx = 0 kho但ng la淡 nghie辰m ne但n chia hai ve叩 ph旦担ng tr狸nh cho cos3
x th狸
( ) ( )2 3 2
* tgx 1 tg x 4tg x 1 tg x +  + + 0=
( )( )
=ァ
 ィ
 + + + =ゥ
=ァェ
 ィ
 + +ェゥ
 =

 = +  
3 2
2
t tgx
3t t t 1 0
t tgx
t 1 3t 2t 1 0
tgx 1
x k , k
4
=
Ba淡i 136 : Gia短i ph旦担ng tr狸nh ( )( )2 2
tgx sin x 2sin x 3 cos2x sin x cos x * = +
Chia hai ve叩 cu短a ph旦担ng tr狸nh (*) cho cos2
x
( )
( )2 2
3 2
2
3 cos x sin x sin x cos x
* tg x 2tg x
cos x
 +
  =
( )  =  +3 2 2
tg x 2tg x 3 1 tg x tgx
( )( )
 +   =
=ァ
 ィ
+   =ゥ
=ァェ
 ィ
+  =ェゥ
 =   = 賊
 
 =  +   = 賊 +  
3 2
3 2
2
tg x tg x 3tgx 3 0
t tgx
t t 3t 3 0
t tgx
t 1 t 3 0
tgx 1 tgx 3
x k x k , k
4 3
Ba淡i 137 : Cho ph旦担ng tr狸nh
( ) ( ) ( ) ( ) ( )3 2
4 6m sin x 3 2m 1 sin x 2 m 2 sin x cos x 4m 3 cos x 0 * +  +    =
a/ Gia短i ph旦担ng tr狸nh khi m = 2
b/ T狸m m 単e奪 ph旦担ng tr狸nh (*) co湛 duy nha叩t mo辰t nghie辰m tre但n 0,
4
。 、
「 ・」 ヲ
Khi x
2

= + k th狸 cosx = 0 va淡 sin x 1= 賊 ne但n
(*) tha淡nh : ( ) ( )4 6m 3 2m 1 0賊  賊  =
1 0 vo但 nghie辰m =
chia hai ve (*) cho 3
cos x 0 th狸
( ) ( ) ( ) ( ) ( ) ( )( )3 2 2
* 4 6m tg x 3 2m 1 tgx 1 tg x 2 m 2 tg x 4m 3 1 tg x 0  +  + +    + =2
)( ) ( ) (3 2
t tgx
t 2m 1 t 3 2m 1 t 4m 3 0 * *
=ァェ
 ィ
 + +   + =ェゥ
( )( )2
t tgx
t 1 t 2mt 4m 3 0
=ァェ
 ィ
  +  =ェゥ
a/ Khi m = 2 th狸 (*) tha淡nh
( )( )2
t tgx
t 1 t 4t 5 0
=ァェ
ィ
  + =ェゥ

 =  = +  tgx 1 x k , k
4
b/ Ta co湛 : x 0,
4
。
 「」 ヲ
、
・ th狸 [ ]tgx t 0,1= 
Xe湛t ph旦担ng tr狸nh : ( )2
t 2mt 4m 3 0 2 +  =
( )2
t 3 2m t 2  = 
2
t 3
2m
t 2

 =

(do t = 2 kho但ng la淡 nghie辰m)
a谷t ( ) ( )
2
t 3
y f t C
t 2

= =

va淡 (d) y = 2m
Ta co湛 : ( )
( )
2
2
t 4t
y ' f t
t 2
 +
= =

3
Do (**) luo但n co湛 nghie辰m t = 1 [ ]0,1 tre但n ye但u cau ba淡i toa湛n
( ) ( )
( ) ( )
。 =
 「
=「」
d y 2m kho但ng co湛 単ie奪m chung v担湛i C
d ca辿t C ta誰i1単ie奪m duy nha叩t t 1
3
2m 2m 2
2
 <  
3
m m
4
 <   1
Ca湛ch kha湛c :
Y C B T f(t) = ( )2
t 2mt 4m 3 0 2 +  = vo但 nghie辰m tre但n [ .),0 1
Ta co湛 (2) co湛 nghie辰m [ ]
( )
, ( ). ( ) ( )
af
f f hay af
S
 モァ
ェ モェェ
   ィ 
ェ
ェ  
ェゥ
0
0 0
0 1 0 1 0 1 0
0 1
2
( )( )
m m
m
m m hay
m
m
ァ  + 
ェ
 >ェ
    ィ
 >ェ
ェ  もゥ
2
4 3 0
4 3 0
4 3 2 2 0
2 2 0
0 1
m  
3
1
4
Do 単o湛 (2) vo但 nghie辰m tre但n [ ), (m hay m hay f ) < >
3
0 1 1 1 0
4
=
3
m m
4
1 <  
BAI TAP
1. Gia短i ca湛c ph旦担ng tr狸nh sau :
a/ 3 2
cos x sin x 3sin xcos x 0+  =
b/ ( ) ( )2
sin x tgx 1 3sin x cos x sin x 3+ =  +
=c/ 2
2cos x cos2x sin x 0+ +
d/
3
2
3
1 cos x
tg x
1 sin x

=

e/ 3 2 2 3
sin x 5sin xcos x 3sin xcos x 3cos x 0  + =
f/ 3 2
cos x sin x 3sin xcos x 0+  =
g/ 1 tgx 2 2 sin x+ =
h/ 3 3
sin x cos x sin x cos x+ = 
k/ 2 2
3tg x 4tgx 4cot gx 3cot g x 2 0+ + + + =
m/
( sin )
cos ( )
cos
x x
tg x tgx
x
+
 +   =2 2
2
3 1
3 8
4 2
0
n/
sin x cos x
1
sin 2x
+
=
2. Cho ph旦担ng tr狸nh : ( ) ( )2 2
sin x 2 m 1 sin x cos x m 1 cos x m+   + =
a/ T狸m m 単e奪 ph旦担ng tr狸nh co湛 nghie辰m
b/ Gia短i ph旦担ng tr狸nh khi m = -2 [ ]( )S : m 2,1 
Th.S Ph畉m H畛ng Danh
TT luy畛n thi 畉i h畛c CLC V挑nh Vi畛n
Ad

Recommended

Luonggiac chuong3
Luonggiac chuong3
Huynh ICT
Luonggiac chuong4
Luonggiac chuong4
Huynh ICT
Luonggiac chuong5
Luonggiac chuong5
Huynh ICT
Luonggiac chuong2
Luonggiac chuong2
Huynh ICT
Luong giac chuong 7
Luong giac chuong 7
Huynh ICT
Luong giac
Luong giac
Huynh ICT
Luong giac chuong 8
Luong giac chuong 8
Huynh ICT
Luonggiac chuong9
Luonggiac chuong9
Huynh ICT
T畛ng h畛p ki畉n th畛c v畉t l鱈 LTH 2014
T畛ng h畛p ki畉n th畛c v畉t l鱈 LTH 2014
H畉i Finiks Hu畛nh
Inequality_LAC
Inequality_LAC
AngelMelguizo
Propriet frutta
Propriet frutta
Valeria Pozzoni
Ace international llp
Ace international llp
Praveen Kumar
Chuy棚n 畛: PT - HPT
Chuy棚n 畛: PT - HPT
H畉i Finiks Hu畛nh
Il paziente psichiatrico grave/difficile.vignette cliniche
Il paziente psichiatrico grave/difficile.vignette cliniche
Valeria Pozzoni
100 bai nghe anh van can ban
100 bai nghe anh van can ban
H畉i Finiks Hu畛nh
Progetto Benessere 4: attivit fisica
Progetto Benessere 4: attivit fisica
Valeria Pozzoni
5.indifference curves
5.indifference curves
Praveen Kumar
H動畛ng D畉n Lu畉n Vn T畛t Nghi畛p - Chuy棚n 畛 M担n H畛c IUH
H動畛ng D畉n Lu畉n Vn T畛t Nghi畛p - Chuy棚n 畛 M担n H畛c IUH
H畉i Finiks Hu畛nh
H動畛ng d畉n c叩ch tr鱈ch d畉n v ghi ti li畛u tham kh畉o cho lu畉n vn, lu畉n 叩n t畉i ...
H動畛ng d畉n c叩ch tr鱈ch d畉n v ghi ti li畛u tham kh畉o cho lu畉n vn, lu畉n 叩n t畉i ...
H畉i Finiks Hu畛nh
Impact de l'intelligence artificielle sur le marketing
Romain Bouilloud
sdfddfsdfddf
mahmoudelamri
Giao trinh-xu-ly-du-lieu-nghien-cuu-voi-spss-for-windows
Giao trinh-xu-ly-du-lieu-nghien-cuu-voi-spss-for-windows
H畉i Finiks Hu畛nh
B KI畉P VI畉T CV HON H畉O
B KI畉P VI畉T CV HON H畉O
H畉i Finiks Hu畛nh
際際滷 b叩o c叩o t畛t nghi畛p
際際滷 b叩o c叩o t畛t nghi畛p
H畉i Finiks Hu畛nh
Bao cao tot nghiep ve marketing truc tiep bang internet
Bao cao tot nghiep ve marketing truc tiep bang internet
H畉i Finiks Hu畛nh
Gi畉i chi ti畉t 畛 thi h l鱈 2007-2014
Gi畉i chi ti畉t 畛 thi h l鱈 2007-2014
H畉i Finiks Hu畛nh
Ph動董ng Ph叩p Gi畉i Nhanh To叩n 畉i H畛c - T担i L Qu畉n Tr畛
Ph動董ng Ph叩p Gi畉i Nhanh To叩n 畉i H畛c - T担i L Qu畉n Tr畛
H畉i Finiks Hu畛nh
De thi-dai-hoc-toan-2002-2014 t担i l qu畉n tr畛 blog
De thi-dai-hoc-toan-2002-2014 t担i l qu畉n tr畛 blog
H畉i Finiks Hu畛nh
Qc tin chi_moi_iuh_2014
Qc tin chi_moi_iuh_2014
H畉i Finiks Hu畛nh
Ni棚n gi叩m 2012 畉i h畛c c担ng nghi畛p tphcm chuy棚n ngnh kinh t畉 IUH
Ni棚n gi叩m 2012 畉i h畛c c担ng nghi畛p tphcm chuy棚n ngnh kinh t畉 IUH
H畉i Finiks Hu畛nh

More Related Content

Viewers also liked (13)

T畛ng h畛p ki畉n th畛c v畉t l鱈 LTH 2014
T畛ng h畛p ki畉n th畛c v畉t l鱈 LTH 2014
H畉i Finiks Hu畛nh
Inequality_LAC
Inequality_LAC
AngelMelguizo
Propriet frutta
Propriet frutta
Valeria Pozzoni
Ace international llp
Ace international llp
Praveen Kumar
Chuy棚n 畛: PT - HPT
Chuy棚n 畛: PT - HPT
H畉i Finiks Hu畛nh
Il paziente psichiatrico grave/difficile.vignette cliniche
Il paziente psichiatrico grave/difficile.vignette cliniche
Valeria Pozzoni
100 bai nghe anh van can ban
100 bai nghe anh van can ban
H畉i Finiks Hu畛nh
Progetto Benessere 4: attivit fisica
Progetto Benessere 4: attivit fisica
Valeria Pozzoni
5.indifference curves
5.indifference curves
Praveen Kumar
H動畛ng D畉n Lu畉n Vn T畛t Nghi畛p - Chuy棚n 畛 M担n H畛c IUH
H動畛ng D畉n Lu畉n Vn T畛t Nghi畛p - Chuy棚n 畛 M担n H畛c IUH
H畉i Finiks Hu畛nh
H動畛ng d畉n c叩ch tr鱈ch d畉n v ghi ti li畛u tham kh畉o cho lu畉n vn, lu畉n 叩n t畉i ...
H動畛ng d畉n c叩ch tr鱈ch d畉n v ghi ti li畛u tham kh畉o cho lu畉n vn, lu畉n 叩n t畉i ...
H畉i Finiks Hu畛nh
Impact de l'intelligence artificielle sur le marketing
Romain Bouilloud
sdfddfsdfddf
mahmoudelamri
T畛ng h畛p ki畉n th畛c v畉t l鱈 LTH 2014
T畛ng h畛p ki畉n th畛c v畉t l鱈 LTH 2014
H畉i Finiks Hu畛nh
Ace international llp
Ace international llp
Praveen Kumar
Il paziente psichiatrico grave/difficile.vignette cliniche
Il paziente psichiatrico grave/difficile.vignette cliniche
Valeria Pozzoni
Progetto Benessere 4: attivit fisica
Progetto Benessere 4: attivit fisica
Valeria Pozzoni
5.indifference curves
5.indifference curves
Praveen Kumar
H動畛ng D畉n Lu畉n Vn T畛t Nghi畛p - Chuy棚n 畛 M担n H畛c IUH
H動畛ng D畉n Lu畉n Vn T畛t Nghi畛p - Chuy棚n 畛 M担n H畛c IUH
H畉i Finiks Hu畛nh
H動畛ng d畉n c叩ch tr鱈ch d畉n v ghi ti li畛u tham kh畉o cho lu畉n vn, lu畉n 叩n t畉i ...
H動畛ng d畉n c叩ch tr鱈ch d畉n v ghi ti li畛u tham kh畉o cho lu畉n vn, lu畉n 叩n t畉i ...
H畉i Finiks Hu畛nh
Impact de l'intelligence artificielle sur le marketing
Romain Bouilloud
sdfddfsdfddf
mahmoudelamri

More from H畉i Finiks Hu畛nh (20)

Giao trinh-xu-ly-du-lieu-nghien-cuu-voi-spss-for-windows
Giao trinh-xu-ly-du-lieu-nghien-cuu-voi-spss-for-windows
H畉i Finiks Hu畛nh
B KI畉P VI畉T CV HON H畉O
B KI畉P VI畉T CV HON H畉O
H畉i Finiks Hu畛nh
際際滷 b叩o c叩o t畛t nghi畛p
際際滷 b叩o c叩o t畛t nghi畛p
H畉i Finiks Hu畛nh
Bao cao tot nghiep ve marketing truc tiep bang internet
Bao cao tot nghiep ve marketing truc tiep bang internet
H畉i Finiks Hu畛nh
Gi畉i chi ti畉t 畛 thi h l鱈 2007-2014
Gi畉i chi ti畉t 畛 thi h l鱈 2007-2014
H畉i Finiks Hu畛nh
Ph動董ng Ph叩p Gi畉i Nhanh To叩n 畉i H畛c - T担i L Qu畉n Tr畛
Ph動董ng Ph叩p Gi畉i Nhanh To叩n 畉i H畛c - T担i L Qu畉n Tr畛
H畉i Finiks Hu畛nh
De thi-dai-hoc-toan-2002-2014 t担i l qu畉n tr畛 blog
De thi-dai-hoc-toan-2002-2014 t担i l qu畉n tr畛 blog
H畉i Finiks Hu畛nh
Qc tin chi_moi_iuh_2014
Qc tin chi_moi_iuh_2014
H畉i Finiks Hu畛nh
Ni棚n gi叩m 2012 畉i h畛c c担ng nghi畛p tphcm chuy棚n ngnh kinh t畉 IUH
Ni棚n gi叩m 2012 畉i h畛c c担ng nghi畛p tphcm chuy棚n ngnh kinh t畉 IUH
H畉i Finiks Hu畛nh
100 bai nghe tieng anh can ban
100 bai nghe tieng anh can ban
H畉i Finiks Hu畛nh
Si(h畛 o l動畛ng qu畛c t畉)
Si(h畛 o l動畛ng qu畛c t畉)
H畉i Finiks Hu畛nh
Huong dan thuc hanh kinh te luong
Huong dan thuc hanh kinh te luong
H畉i Finiks Hu畛nh
Giai thich ngu phap tieng anh mai-lan-huong
Giai thich ngu phap tieng anh mai-lan-huong
H畉i Finiks Hu畛nh
Tieu luan marketing ngan hang techcombank
Tieu luan marketing ngan hang techcombank
H畉i Finiks Hu畛nh
10 v畉n c但u h畛i v狸 sao
10 v畉n c但u h畛i v狸 sao
H畉i Finiks Hu畛nh
Tieu luan qttc cty-kinh do-iuh-2010-2012
Tieu luan qttc cty-kinh do-iuh-2010-2012
H畉i Finiks Hu畛nh
Noi dung LTDH toan 2014 - hai phung huynh
Noi dung LTDH toan 2014 - hai phung huynh
H畉i Finiks Hu畛nh
Everyday english, second edition
Everyday english, second edition
H畉i Finiks Hu畛nh
[toilaquantri] lam chu_tu_duy_thay_doi_van_menh
[toilaquantri] lam chu_tu_duy_thay_doi_van_menh
H畉i Finiks Hu畛nh
Xu huong cac nhom nganh o vn
Xu huong cac nhom nganh o vn
H畉i Finiks Hu畛nh
Giao trinh-xu-ly-du-lieu-nghien-cuu-voi-spss-for-windows
Giao trinh-xu-ly-du-lieu-nghien-cuu-voi-spss-for-windows
H畉i Finiks Hu畛nh
際際滷 b叩o c叩o t畛t nghi畛p
際際滷 b叩o c叩o t畛t nghi畛p
H畉i Finiks Hu畛nh
Bao cao tot nghiep ve marketing truc tiep bang internet
Bao cao tot nghiep ve marketing truc tiep bang internet
H畉i Finiks Hu畛nh
Gi畉i chi ti畉t 畛 thi h l鱈 2007-2014
Gi畉i chi ti畉t 畛 thi h l鱈 2007-2014
H畉i Finiks Hu畛nh
Ph動董ng Ph叩p Gi畉i Nhanh To叩n 畉i H畛c - T担i L Qu畉n Tr畛
Ph動董ng Ph叩p Gi畉i Nhanh To叩n 畉i H畛c - T担i L Qu畉n Tr畛
H畉i Finiks Hu畛nh
De thi-dai-hoc-toan-2002-2014 t担i l qu畉n tr畛 blog
De thi-dai-hoc-toan-2002-2014 t担i l qu畉n tr畛 blog
H畉i Finiks Hu畛nh
Ni棚n gi叩m 2012 畉i h畛c c担ng nghi畛p tphcm chuy棚n ngnh kinh t畉 IUH
Ni棚n gi叩m 2012 畉i h畛c c担ng nghi畛p tphcm chuy棚n ngnh kinh t畉 IUH
H畉i Finiks Hu畛nh
Si(h畛 o l動畛ng qu畛c t畉)
Si(h畛 o l動畛ng qu畛c t畉)
H畉i Finiks Hu畛nh
Huong dan thuc hanh kinh te luong
Huong dan thuc hanh kinh te luong
H畉i Finiks Hu畛nh
Giai thich ngu phap tieng anh mai-lan-huong
Giai thich ngu phap tieng anh mai-lan-huong
H畉i Finiks Hu畛nh
Tieu luan marketing ngan hang techcombank
Tieu luan marketing ngan hang techcombank
H畉i Finiks Hu畛nh
Tieu luan qttc cty-kinh do-iuh-2010-2012
Tieu luan qttc cty-kinh do-iuh-2010-2012
H畉i Finiks Hu畛nh
Noi dung LTDH toan 2014 - hai phung huynh
Noi dung LTDH toan 2014 - hai phung huynh
H畉i Finiks Hu畛nh
Everyday english, second edition
Everyday english, second edition
H畉i Finiks Hu畛nh
[toilaquantri] lam chu_tu_duy_thay_doi_van_menh
[toilaquantri] lam chu_tu_duy_thay_doi_van_menh
H畉i Finiks Hu畛nh
Ad

C6 phuongtrinhdangcap

  • 1. CHNG VI: PHNG TRNH ANG CAP 2 2 asin u bsinu cosu ccos u d+ + = Ca湛ch gia短i : ( )T狸m nghie辰m u k lu湛c 単o湛 cosu 0 va淡 sinu 1 2 = + = = 賊 2 Chia hai ve叩 ph旦担ng tr狸nh cho cos u 0 ta 単旦担誰c ph旦担ng tr狸nh : ( )2 2 atg u btgu c d 1 tg u+ + = + a谷t ta co湛 ph旦担ng tr狸nh :t tgu= ( ) 2 a d t bt c d 0 + + = Gia短i ph旦担ng tr狸nh t狸m 単旦担誰c t = tgu Ba淡i 127 : Gia短i ph旦担ng tr狸nh ( )2 2 cos x 3 sin 2x 1 sin x * = + V狸 cosx = 0 kho但ng la淡 nghie辰m ne但n Chia hai ve叩 cu短a (*) cho 2 cos 0 ta 単旦担誰c ( ) ( )2 2 * 1 2 3tgx 1 tg x tg x = + + a谷t t = tgx ta co湛 ph旦担ng tr狸nh : 2 2t 2 3t 0+ = t 0 t 3 = = Va辰y ( )* = = = = + tgx 0 hay tgx 3 x k hay x k , k 3 Ba淡i 128 : Gia短i ph旦担ng tr狸nh ( )3 3 2 cos x 4 sin x 3cos x sin x sin x 0 * + = Khi x k th狸 cos x 0va淡 sin x 2 = + = = 賊1 th狸 (*) vo但 nghie辰m Do kho但ng la淡 nghie辰m ne但n chia hai ve叩 cu短a (*) cho cos3 x=cos x 0 ta co湛 (*) ( )3 2 2 1 4tg x 3tg x tgx 1 tg x 0 + + = ( )( ) + = + = = = 賊 = + = 賊 + 3 2 2 3tg x 3tg x tgx 1 0 tgx 1 3tg x 1 0 3 tgx 1 tgx 3 x k x k , k 4 6
  • 2. Ba淡i 129 : Gia短i ph旦担ng tr狸nh ( )4 2 2 4 3cos x 4 sin x cos x sin x 0 * + = Do cosx = 0 kho但ng la淡 nghie辰m ne但n chia hai ve叩 cu短a (*) cho 4 cos x 0 Ta co湛 : (*) 2 4 3 4tg x tg x 0 + = = = = 賊 = 賊 = 賊 = 賊 + = 賊 + 2 2 tg x 1 tg x 3 tgx 1 tg tgx tg 4 3 x k x k , k 4 3 Ba淡i 130 : Gia短i ph旦担ng tr狸nh ( )sin 2x 2tgx 3 *+ = Chia hai ve叩 cu短a (*) cho 2 cos x 0 ta 単旦担誰c (*) 2 2 2sin x cos x 2tgx 3 cos x cos x cos x + = 2 ( ) ( )2 2 2tgx 2tgx 1 tg x 3 1 tg x + + = + 3 2 t tgx 2t 3t 4t 3 0 =ァ ィ + =ゥ ( )( ) =ァェ ィ +ェゥ 2 t tgx t 1 2t t 3 0= = = + tgx 1 x k , k 4 Ba淡i 131 : Gia短i ph旦担ng tr狸nh ( )3 sin x sin 2x sin 3x 6cos x *+ = ( ) 2 3 * 2sin x cos x 3sin x 4sin x 6cos x + = 3 ( ) = = 賊Khi cos x 0 ( sin x 1) th狸 * vo但 nghie辰m Chia hai ve叩 ph旦担ng tr狸nh (*) cho 3 cos x 0 ta 単旦担誰c ( )* 2 3 2 2 2sin x 3sin x 1 sin x . 4 cos x cos x cos x cos x + 3 6= ( ) ( )( ) + + = + = = = = 留 = 賊 = 留 + = 賊 + 留 = 2 2 3 3 2 2 2tg x 3tgx 1 tg x 4tg x 6 tg x 2tg x 3tgx 6 0 tgx 2 tg x 3 0 tgx 2 tg tgx 3 x k x k , k ( v担湛i tg 3 2)
  • 3. Ba淡i 132 : (e thi tuye奪n sinh a誰i ho誰c kho叩i A, na棚m 2003) Gia短i ph旦担ng tr狸nh ( )2cos2x 1 cot gx 1 sin x sin2x * 1 tgx 2 = + + ieu kie辰n sin2x 0 va淡 tgx 1 Ta co湛 : ( )2 22 2 cos x cos x sin xcos2x cos x sin x sin x1 tgx cos x sin x1 cos x = = + ++ ( ) (= = +cos x cos x sin x do tgx 1 ne但n, sin x cos x 0) Do 単o湛 : ( ) ( )2 2cos x 1 * 1 cos x sin x cos x sin x sin 2x sin x 2 = + ( ) ( ) ( ) = = = = 2 cos x sin x 1 sin 2x sin x cos x sin x sin x cos x sin x cos x sin x 0 hay 1 sin x cos x sin x (**) ( ) ( ) = 。 「 「 = 「」 2 2 tgx 1 nha辰n so v担湛i tgx 1 1 sin x tg x do cos x 0 cos xcos x ( ) ( ) 。 = + 「 「 + =「」 = + 2 x k , k 4 2tg x tgx 1 0 vo但 nghie辰m x k , k nha辰n do sin 2x 0 4 L旦u y湛 : co湛 the奪 la淡m ca湛ch kha湛c ( ) ( ) 1 1 * * 1 sin 2x 1 cos2x 2 2 + =0 = + = + 3 sin 2x cos 2x 3 2 sin 2x : vo但 nghie辰m 4 Ba淡i 133 : Gia短i ph旦担ng tr狸nh ( )sin 3x cos3x 2cos x 0 *+ + = ( ) ( ) ( )3 3 * 3sin x 4sin x 4 cos x 3cos x 2cos x + + 0= =3 3 3sin x 4sin x 4cos x cos x 0 + V狸 cosx = 0 kho但ng la淡 nghie辰m ne但n chia hai ve叩 ph旦担ng tr狸nh cho ta 単旦担誰c 3 cos x 0 ( ) ( ) ( )2 3 2 * 3tgx 1 tg x 4tg x 4 1 tg x 0 + + + =
  • 4. ( )( ) + + = =ァ ィ + =ゥ =ァェ ィ + =ェゥ = = 賊 = + = 賊 + 3 2 3 2 2 tg x tg x 3tgx 3 0 t tgx t t 3t 3 0 t tgx t 1 t 3 0 tgx 1 tgx 3 x k x k , k 4 3 Ba淡i 134 : Gia短i ph旦担ng tr狸nh ( )3 5sin4x.cos x 6sin x 2cos x * 2cos2x = ieu kie辰n : 2 2 cos2x 0 cos x sin x 0 tgx 1 賊 Ta co湛 : (*) 3 10sin 2x cos2x cos x 6sin x 2cos x 2cos2x cos2x 0 ァ =ェ ィ ェ ゥ 3 6sin x 2cos x 5sin 2x cos x tgx 1 ァ = ィ 賊ゥ ( )3 2 6sin x 2cos x 10sin x cos x * * tgx 1 ァ =ェ ィ 賊ェゥ Do cosx = 0 kho但ng la淡 nghie辰m cu短a (**), chia hai ve叩 ph旦担ng tr狸nh (**) cho ta 単旦担誰c3 cos x ( ) 2 6tgx 2 10tgx * * cos x tgx 1 ァ =ェ ィ ェ 賊ゥ ( )2 t tgx v担湛i t 1 6t 1 t 2 10t = ァェ ィ + =ェゥ 賊 = 賊 = 賊ァ ァ ィ ィ = + + =ゥ ゥ 3 2 t tgx v担湛i t 1 t tgx v担湛i t 1 3t 2t 1 0 (t 1) (3t 3t 1) 0 = 賊ァ ィ =ゥ t tgx v担湛i t 1 : vo但 nghie辰m t 1 Ba淡i 135 : Gia短i ph旦担ng tr狸nh ( )3 sin x 4 sin x cos x 0 * + = V狸 cosx = 0 kho但ng la淡 nghie辰m ne但n chia hai ve叩 ph旦担ng tr狸nh cho cos3 x th狸 ( ) ( )2 3 2 * tgx 1 tg x 4tg x 1 tg x + + + 0=
  • 5. ( )( ) =ァ ィ + + + =ゥ =ァェ ィ + +ェゥ = = + 3 2 2 t tgx 3t t t 1 0 t tgx t 1 3t 2t 1 0 tgx 1 x k , k 4 = Ba淡i 136 : Gia短i ph旦担ng tr狸nh ( )( )2 2 tgx sin x 2sin x 3 cos2x sin x cos x * = + Chia hai ve叩 cu短a ph旦担ng tr狸nh (*) cho cos2 x ( ) ( )2 2 3 2 2 3 cos x sin x sin x cos x * tg x 2tg x cos x + = ( ) = +3 2 2 tg x 2tg x 3 1 tg x tgx ( )( ) + = =ァ ィ + =ゥ =ァェ ィ + =ェゥ = = 賊 = + = 賊 + 3 2 3 2 2 tg x tg x 3tgx 3 0 t tgx t t 3t 3 0 t tgx t 1 t 3 0 tgx 1 tgx 3 x k x k , k 4 3 Ba淡i 137 : Cho ph旦担ng tr狸nh ( ) ( ) ( ) ( ) ( )3 2 4 6m sin x 3 2m 1 sin x 2 m 2 sin x cos x 4m 3 cos x 0 * + + = a/ Gia短i ph旦担ng tr狸nh khi m = 2 b/ T狸m m 単e奪 ph旦担ng tr狸nh (*) co湛 duy nha叩t mo辰t nghie辰m tre但n 0, 4 。 、 「 ・」 ヲ Khi x 2 = + k th狸 cosx = 0 va淡 sin x 1= 賊 ne但n (*) tha淡nh : ( ) ( )4 6m 3 2m 1 0賊 賊 = 1 0 vo但 nghie辰m = chia hai ve (*) cho 3 cos x 0 th狸 ( ) ( ) ( ) ( ) ( ) ( )( )3 2 2 * 4 6m tg x 3 2m 1 tgx 1 tg x 2 m 2 tg x 4m 3 1 tg x 0 + + + + =2 )( ) ( ) (3 2 t tgx t 2m 1 t 3 2m 1 t 4m 3 0 * * =ァェ ィ + + + =ェゥ
  • 6. ( )( )2 t tgx t 1 t 2mt 4m 3 0 =ァェ ィ + =ェゥ a/ Khi m = 2 th狸 (*) tha淡nh ( )( )2 t tgx t 1 t 4t 5 0 =ァェ ィ + =ェゥ = = + tgx 1 x k , k 4 b/ Ta co湛 : x 0, 4 。 「」 ヲ 、 ・ th狸 [ ]tgx t 0,1= Xe湛t ph旦担ng tr狸nh : ( )2 t 2mt 4m 3 0 2 + = ( )2 t 3 2m t 2 = 2 t 3 2m t 2 = (do t = 2 kho但ng la淡 nghie辰m) a谷t ( ) ( ) 2 t 3 y f t C t 2 = = va淡 (d) y = 2m Ta co湛 : ( ) ( ) 2 2 t 4t y ' f t t 2 + = = 3 Do (**) luo但n co湛 nghie辰m t = 1 [ ]0,1 tre但n ye但u cau ba淡i toa湛n ( ) ( ) ( ) ( ) 。 = 「 =「」 d y 2m kho但ng co湛 単ie奪m chung v担湛i C d ca辿t C ta誰i1単ie奪m duy nha叩t t 1 3 2m 2m 2 2 < 3 m m 4 < 1 Ca湛ch kha湛c : Y C B T f(t) = ( )2 t 2mt 4m 3 0 2 + = vo但 nghie辰m tre但n [ .),0 1 Ta co湛 (2) co湛 nghie辰m [ ] ( ) , ( ). ( ) ( ) af f f hay af S モァ ェ モェェ ィ ェ ェ ェゥ 0 0 0 0 1 0 1 0 1 0 0 1 2
  • 7. ( )( ) m m m m m hay m m ァ + ェ >ェ ィ >ェ ェ もゥ 2 4 3 0 4 3 0 4 3 2 2 0 2 2 0 0 1 m 3 1 4 Do 単o湛 (2) vo但 nghie辰m tre但n [ ), (m hay m hay f ) < > 3 0 1 1 1 0 4 = 3 m m 4 1 < BAI TAP 1. Gia短i ca湛c ph旦担ng tr狸nh sau : a/ 3 2 cos x sin x 3sin xcos x 0+ = b/ ( ) ( )2 sin x tgx 1 3sin x cos x sin x 3+ = + =c/ 2 2cos x cos2x sin x 0+ + d/ 3 2 3 1 cos x tg x 1 sin x = e/ 3 2 2 3 sin x 5sin xcos x 3sin xcos x 3cos x 0 + = f/ 3 2 cos x sin x 3sin xcos x 0+ = g/ 1 tgx 2 2 sin x+ = h/ 3 3 sin x cos x sin x cos x+ = k/ 2 2 3tg x 4tgx 4cot gx 3cot g x 2 0+ + + + = m/ ( sin ) cos ( ) cos x x tg x tgx x + + =2 2 2 3 1 3 8 4 2 0 n/ sin x cos x 1 sin 2x + = 2. Cho ph旦担ng tr狸nh : ( ) ( )2 2 sin x 2 m 1 sin x cos x m 1 cos x m+ + = a/ T狸m m 単e奪 ph旦担ng tr狸nh co湛 nghie辰m b/ Gia短i ph旦担ng tr狸nh khi m = -2 [ ]( )S : m 2,1 Th.S Ph畉m H畛ng Danh TT luy畛n thi 畉i h畛c CLC V挑nh Vi畛n