際際滷

際際滷Share a Scribd company logo
POSITION ANALYSIS
Chapter 4
Introduction
Dynamics
Kinematics
Position Velocity Acceleration
Kinetics
Newtons
Second Law
Work &
Energy
Impulse &
Momentum
Stresses
Design
Graphical
Analytical
Coordinate Systems
 Global or Absolute
 Attached to Earth
 Local
 Attached to a link at some point
of interest
 LNCS (local nonrotating
coordinate system)
 LRCS (local rotating coordinate
system)
Position and Displacement
22
XYA RRR 
件


э


 
X
Y
R
R1
tan
Coordinate
Transformation わ sincos yxX RRR 
わ cossin yxY RRR
 Displacement
 The straight-line distance between the initial and final
position of a point which has moved in the reference
frame
ABBA RRR
Translation, Rotation and Complex
Motion
 Translation
 All points on the body have the
same displacement
BBAA RR ''
Translation, Rotation and Complex
Motion
 Rotation
 Different points in the body
undergo different
displacements and thus there is
a displacement difference
between any two points chosen
 Eulers theorem
BAABBB RRR  ''
Translation, Rotation and Complex
Motion
 Complex Motion
 Is the sum of the translation and
rotation
 ChaslesTheorem
'"'" BBBBBB RRR 
'"'" ABAAAB RRR
Graphical Position Analysis
 For any one-DOF, such a fourbar, only one
parameter is needed to completely define the
positions of all the links. The parameter usually
chosen is the angle of the input link.
Graphical Position Analysis
 Construction of the graphical solution
 The a, b, c, d and the angle 慮2 of the input link are
given.
 1. The ground link (1) and the input link (2) are
drawn to a convenient scale such that they
intersect at the origin O2 of the global XY
coordinate system with link 2 placed at the input
angle 慮2.
 2. Link 1 is drawn along the X axis for
convenience.
Graphical Position Analysis
 Construction of the graphical solution
Graphical Position Analysis
 Construction of the graphical solution
 3. The compass is set to the scaled length of link
3, and an arc of that radius swung about the end
of link 2 (point A).
Graphical Position Analysis
 Construction of the graphical solution
 4. Set the compass to the scaled length of link 4,
and a second arc swung about the end of link 1
(point O4). These two arcs will have two
intersections at B and B that define the two
solution to the position problem for a fourbar
linkage which can be assembled in two
configurations, called circuits, labeled open and
crossed.
 5. The angles of links 3 and 4 can be measured
with a protractor.
Graphical Position Analysis
 Construction of the graphical solution
Ch04 position analysis
Algebraic Position Analysis
 Algebraic Algorithm
 Coordinates of point A
 Coordinates of point B
2cosaAx 
2sinaAy 
   222
yyxx ABABb 
  222
yx BdBc
Algebraic Position Analysis
 Algebraic Algorithm
 Coordinates of point B
     dA
BA
S
dA
BA
dA
dcba
B
x
yy
x
yy
x
x







2
2
2
2
2
2222
02
2
2
緒件


э



 c
dA
BA
SB
x
yy
y
P
PRQQ
By
2
42
縁

 
12
2



dA
A
P
x
y
 
dA
SdA
Q
x
y



2
  22
cSdR 
 dA
dcba
S
x 


2
2222
Algebraic Position Analysis
 Algebraic Algorithm
 Link angles for the
given position
件


э




 
xx
yy
AB
AB1
3 tan
件


э



 
dB
B
x
y1
4 tan
Algebraic Position Analysis
 Vector Loop
 Links are represented as position vectors
Algebraic Position Analysis
 Complex Numbers as Vector
 Unit vectors
Algebraic Position Analysis
 Complex Numbers as Vector
 Complex number notation
Algebraic Position Analysis
 Complex Numbers as Vector
 Complex number notation
 Euler identity
縁縁
sincos je j
縁緒



j
j
je
d
de
Algebraic Position Analysis
 Vector Loop Equation
for a Fourbar Linkage
 Position vector
 Complex number
notation
01432 緒 RRRR
駕駕駕
01432
緒 縁縁縁 jjjj
decebeae
0Independent
variable
To be
determine
Algebraic Position Analysis
 Vector Loop Equation for a
Fourbar Linkage
 Euler equivalents and separate
into two scalar equations
 
 24
23
,,,,
,,,,
縁
縁
dcbaf
dcbaf


        0sincossincossincossincos 11443322 緒 縁縁縁縁縁縁縁 jdjcjbja
Real part: 0coscoscos 432 緒 dcba 縁縁
0sinsinsin 432 緒 縁縁 cbaImaginary part:
Algebraic Position Analysis
 Solve simultaneously
 Square and add
dcab  423 coscoscos 縁縁
423 sinsinsin 縁縁 cab 
     2
42
2
423
2
3
22
coscossinsincossin dcacab 緒 縁縁縁縁縁
   2
42
2
42
2
coscossinsin dcacab  縁縁縁
 424242
2222
coscossinsin2cos2cos2 縁縁縁縁縁  accdaddcab
Algebraic Position Analysis
 To simplify, constants are define in terms of the
constant link length,
 Substituting the identity,
 Freudensteins equation
a
d
K 1
424232241 sinsincoscoscoscos 縁縁縁縁縁 緒 KKK
c
d
K 2
ac
dcba
K
2
2222
3


  424242 sinsincoscoscos 縁縁縁縁縁 緒
 4232241 coscoscos 縁縁縁 緒 KKK
Algebraic Position Analysis
 Using half angle identities,
 Simplified form














2
tan1
2
tan2
sin
42
4
4


















2
tan1
2
tan1
cos
42
42
4



0
2
tan
2
tan 442
緒











CBA
縁
  3221
2
32212
cos1
sin2
coscos
KKKC
B
KKKA





縁
Algebraic Position Analysis
 The solution,
 If the solution is complex conjugate, the link lengths
chosen are not capable of connection
 The solution will usually be real and unequal
 Crossed (+)
 Open (-)
A
ACBB
2
4
2
tan
2
4 縁
緒












 縁

A
ACBB
2
4
arctan2
2
4 2,1
Algebraic Position Analysis
 Solution for 慮3
 Square and add
dbac  324 coscoscos 縁縁
324 sinsinsin 縁縁 bac 
323252431 sinsincoscoscoscos 縁縁縁縁縁 緒 KKK
b
d
K 4
ab
badc
K
2
2222
5


0
2
tan
2
tan 332
緒











FED
縁
  5241
2
52412
cos1
sin2
coscos
KKKF
E
KKKD





縁
Algebraic Position Analysis
 The solution,
 If the solution is complex conjugate, the link lengths
chosen are not capable of connection
 The solution will usually be real and unequal
 Crossed (+)
 Open (-)







 縁

D
DFEE
2
4
arctan2
2
3 2,1
Algebraic Position Analysis
 Fourbar 際際滷r-Crank
Linkage
 Position vector
 Complex number
notation
01432 緒 RRRR
駕駕駕
01432
緒 縁縁縁 jjjj
decebeae
0Independent
variable
To be
determine
Algebraic Position Analysis
 Vector Loop Equation for a
Fourbar Linkage
 Euler equivalents and separate
into two scalar equations
        0sincossincossincossincos 11443322 緒 縁縁縁縁縁縁縁 jdjcjbja
Real part: 0coscoscos 432 緒 dcba 縁縁
0sinsinsin 432 緒 縁縁 cbaImaginary part:
Algebraic Position Analysis
 The solution,
32
2
3
coscos
sin
arcsin1
縁


bad
b
ca






 



 




 

b
ca 2
3
sin
arcsin2
Algebraic Position Analysis
 Inverted 際際滷r-Crank (p193-p194)
Algebraic Position Analysis
 Geared Fivebar Linkage
 Position vector
 Complex number notation
015432 緒 RRRRR
駕駕駕駕
015432
緒 縁縁縁縁 jjjjj
fedecebeae
Algebraic Position Analysis
 Geared Fivebar Linkage
 Using the relationship
between the two geared
links;
 Complex number notation
縁  25
 
012432
緒  縁縁縁縁 jjjjj
fedecebeae
ratiogear,
anglephase,
Algebraic Position Analysis
 Geared Fivebar Linkage
 Solution (pag. 196)







 縁

D
DFEE
2
4
arctan2
2
4 2,1

  
  
   
 縁
縁

縁
縁





22
22
2
22222
22
22
sinsin2
coscos2
cos2
sinsin2
coscos2
ad
fad
affdcbaC
adcB
fadcA
CAF
BE
ACD



2
Algebraic Position Analysis
 Geared Fivebar Linkage
 Solution (pag. 196)







 縁

L
LNMM
2
4
arctan2
2
3 2,1

  
  
   
 縁
縁

縁
縁





22
22
2
22222
22
22
sinsin2
coscos2
cos2
sinsin2
coscos2
ad
fad
affdcbaK
dabH
fdabG
KGN
HM
GKL



2
Algebraic Position Analysis
 Sixbar Linkage
Algebraic Position Analysis
 Sixbar Linkage

More Related Content

Ch04 position analysis

  • 2. Introduction Dynamics Kinematics Position Velocity Acceleration Kinetics Newtons Second Law Work & Energy Impulse & Momentum Stresses Design Graphical Analytical
  • 3. Coordinate Systems Global or Absolute Attached to Earth Local Attached to a link at some point of interest LNCS (local nonrotating coordinate system) LRCS (local rotating coordinate system)
  • 4. Position and Displacement 22 XYA RRR 件 э X Y R R1 tan Coordinate Transformation わ sincos yxX RRR わ cossin yxY RRR
  • 5. Displacement The straight-line distance between the initial and final position of a point which has moved in the reference frame ABBA RRR
  • 6. Translation, Rotation and Complex Motion Translation All points on the body have the same displacement BBAA RR ''
  • 7. Translation, Rotation and Complex Motion Rotation Different points in the body undergo different displacements and thus there is a displacement difference between any two points chosen Eulers theorem BAABBB RRR ''
  • 8. Translation, Rotation and Complex Motion Complex Motion Is the sum of the translation and rotation ChaslesTheorem '"'" BBBBBB RRR '"'" ABAAAB RRR
  • 9. Graphical Position Analysis For any one-DOF, such a fourbar, only one parameter is needed to completely define the positions of all the links. The parameter usually chosen is the angle of the input link.
  • 10. Graphical Position Analysis Construction of the graphical solution The a, b, c, d and the angle 慮2 of the input link are given. 1. The ground link (1) and the input link (2) are drawn to a convenient scale such that they intersect at the origin O2 of the global XY coordinate system with link 2 placed at the input angle 慮2. 2. Link 1 is drawn along the X axis for convenience.
  • 11. Graphical Position Analysis Construction of the graphical solution
  • 12. Graphical Position Analysis Construction of the graphical solution 3. The compass is set to the scaled length of link 3, and an arc of that radius swung about the end of link 2 (point A).
  • 13. Graphical Position Analysis Construction of the graphical solution 4. Set the compass to the scaled length of link 4, and a second arc swung about the end of link 1 (point O4). These two arcs will have two intersections at B and B that define the two solution to the position problem for a fourbar linkage which can be assembled in two configurations, called circuits, labeled open and crossed. 5. The angles of links 3 and 4 can be measured with a protractor.
  • 14. Graphical Position Analysis Construction of the graphical solution
  • 16. Algebraic Position Analysis Algebraic Algorithm Coordinates of point A Coordinates of point B 2cosaAx 2sinaAy 222 yyxx ABABb 222 yx BdBc
  • 17. Algebraic Position Analysis Algebraic Algorithm Coordinates of point B dA BA S dA BA dA dcba B x yy x yy x x 2 2 2 2 2 2222 02 2 2 緒件 э c dA BA SB x yy y P PRQQ By 2 42 縁 12 2 dA A P x y dA SdA Q x y 2 22 cSdR dA dcba S x 2 2222
  • 18. Algebraic Position Analysis Algebraic Algorithm Link angles for the given position 件 э xx yy AB AB1 3 tan 件 э dB B x y1 4 tan
  • 19. Algebraic Position Analysis Vector Loop Links are represented as position vectors
  • 20. Algebraic Position Analysis Complex Numbers as Vector Unit vectors
  • 21. Algebraic Position Analysis Complex Numbers as Vector Complex number notation
  • 22. Algebraic Position Analysis Complex Numbers as Vector Complex number notation Euler identity 縁縁 sincos je j 縁緒 j j je d de
  • 23. Algebraic Position Analysis Vector Loop Equation for a Fourbar Linkage Position vector Complex number notation 01432 緒 RRRR 駕駕駕 01432 緒 縁縁縁 jjjj decebeae 0Independent variable To be determine
  • 24. Algebraic Position Analysis Vector Loop Equation for a Fourbar Linkage Euler equivalents and separate into two scalar equations 24 23 ,,,, ,,,, 縁 縁 dcbaf dcbaf 0sincossincossincossincos 11443322 緒 縁縁縁縁縁縁縁 jdjcjbja Real part: 0coscoscos 432 緒 dcba 縁縁 0sinsinsin 432 緒 縁縁 cbaImaginary part:
  • 25. Algebraic Position Analysis Solve simultaneously Square and add dcab 423 coscoscos 縁縁 423 sinsinsin 縁縁 cab 2 42 2 423 2 3 22 coscossinsincossin dcacab 緒 縁縁縁縁縁 2 42 2 42 2 coscossinsin dcacab 縁縁縁 424242 2222 coscossinsin2cos2cos2 縁縁縁縁縁 accdaddcab
  • 26. Algebraic Position Analysis To simplify, constants are define in terms of the constant link length, Substituting the identity, Freudensteins equation a d K 1 424232241 sinsincoscoscoscos 縁縁縁縁縁 緒 KKK c d K 2 ac dcba K 2 2222 3 424242 sinsincoscoscos 縁縁縁縁縁 緒 4232241 coscoscos 縁縁縁 緒 KKK
  • 27. Algebraic Position Analysis Using half angle identities, Simplified form 2 tan1 2 tan2 sin 42 4 4 2 tan1 2 tan1 cos 42 42 4 0 2 tan 2 tan 442 緒 CBA 縁 3221 2 32212 cos1 sin2 coscos KKKC B KKKA 縁
  • 28. Algebraic Position Analysis The solution, If the solution is complex conjugate, the link lengths chosen are not capable of connection The solution will usually be real and unequal Crossed (+) Open (-) A ACBB 2 4 2 tan 2 4 縁 緒 縁 A ACBB 2 4 arctan2 2 4 2,1
  • 29. Algebraic Position Analysis Solution for 慮3 Square and add dbac 324 coscoscos 縁縁 324 sinsinsin 縁縁 bac 323252431 sinsincoscoscoscos 縁縁縁縁縁 緒 KKK b d K 4 ab badc K 2 2222 5 0 2 tan 2 tan 332 緒 FED 縁 5241 2 52412 cos1 sin2 coscos KKKF E KKKD 縁
  • 30. Algebraic Position Analysis The solution, If the solution is complex conjugate, the link lengths chosen are not capable of connection The solution will usually be real and unequal Crossed (+) Open (-) 縁 D DFEE 2 4 arctan2 2 3 2,1
  • 31. Algebraic Position Analysis Fourbar 際際滷r-Crank Linkage Position vector Complex number notation 01432 緒 RRRR 駕駕駕 01432 緒 縁縁縁 jjjj decebeae 0Independent variable To be determine
  • 32. Algebraic Position Analysis Vector Loop Equation for a Fourbar Linkage Euler equivalents and separate into two scalar equations 0sincossincossincossincos 11443322 緒 縁縁縁縁縁縁縁 jdjcjbja Real part: 0coscoscos 432 緒 dcba 縁縁 0sinsinsin 432 緒 縁縁 cbaImaginary part:
  • 33. Algebraic Position Analysis The solution, 32 2 3 coscos sin arcsin1 縁 bad b ca b ca 2 3 sin arcsin2
  • 34. Algebraic Position Analysis Inverted 際際滷r-Crank (p193-p194)
  • 35. Algebraic Position Analysis Geared Fivebar Linkage Position vector Complex number notation 015432 緒 RRRRR 駕駕駕駕 015432 緒 縁縁縁縁 jjjjj fedecebeae
  • 36. Algebraic Position Analysis Geared Fivebar Linkage Using the relationship between the two geared links; Complex number notation 縁 25 012432 緒 縁縁縁縁 jjjjj fedecebeae ratiogear, anglephase,
  • 37. Algebraic Position Analysis Geared Fivebar Linkage Solution (pag. 196) 縁 D DFEE 2 4 arctan2 2 4 2,1 縁 縁 縁 縁 22 22 2 22222 22 22 sinsin2 coscos2 cos2 sinsin2 coscos2 ad fad affdcbaC adcB fadcA CAF BE ACD 2
  • 38. Algebraic Position Analysis Geared Fivebar Linkage Solution (pag. 196) 縁 L LNMM 2 4 arctan2 2 3 2,1 縁 縁 縁 縁 22 22 2 22222 22 22 sinsin2 coscos2 cos2 sinsin2 coscos2 ad fad affdcbaK dabH fdabG KGN HM GKL 2
  • 39. Algebraic Position Analysis Sixbar Linkage
  • 40. Algebraic Position Analysis Sixbar Linkage