13. 参考資料
[1] Machine Learning: The High Interest Credit Card of Technical Dept
(https://research.google.com/pubs/pub43146.html)
[2] My model has higher BLEU, can I ship it? The Joel Test for machine learning systems
(https://www.lucypark.kr/docs/2017-acml/#/)
[3] Introducing FBLearner Flow: Facebook’s AI backbone
(https://code.facebook.com/posts/1072626246134461/introducing-fblearner-flow-facebook-s-ai-backbone/)
[4] NSML: A Machine Learning Platform That Enables You to Focus on Your Models
(http://learningsys.org/nips17/assets/papers/paper_32.pdf)
[5] Pythonによる機械学習実験の管理
(/shima__shima/2011-mtokyoscipy1)
[6] 機械学習工学に向けて
(http://jssst.or.jp/files/user/taikai/2017/GENERAL/general6-1.pdf)
[7] Deep Learning - Chapter11 Practical Methodology
(http://www.deeplearningbook.org/contents/guidelines.html)
[8] Best Practices for Applying Deep Learning to Novel Applications
(https://arxiv.org/abs/1704.01568)
[9] The Machine Learning Reproducibility Crisis
(https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/)