1. The document defines key properties of angles associated with parallel lines and transversals, including corresponding angles, alternate angles, and interior angles.
2. It provides examples of using these properties to determine if lines are parallel and calculate angle measures.
3. Exercises at the end provide additional practice problems involving parallel lines and their associated angles.
1 of 26
More Related Content
Chapter 1 lines and angles ii [compatibility mode]
1. 1
CHAPTER 1
Mohd Khusaini Majid
Mrsm Kota Kinabalu
3. 3
Identify transversals, corresponding IIIdddeeennntttiiifffyyy tttrrraaannnsssvvveeerrrsssaaalllsss,,, cccooorrrrrreeessspppooonnndddiiinnnggg aaaannnngggglllleeeessss,,,,
aaaalllltttteeeerrrrnnnnaaaatttteeee aaaannnngggglllleeeessss aaaannnndddd iiiinnnntttteeeerrrriiiioooorrrr aaaannnngggglllleeeessss
Transversal
– a line that intersects two or more parallel lines
P
P R
Q Q
Q
S
P
PQ and RS are transversals.
4. 4
Corresponding angles
b a
e
f
d
c
TIPS
Corresponding angles
can be identified by
the F shape. The F can
be flipped over or
turned upside down.
Shaded angles are
corresponding angles. Angles a
and d are also corresponding
angle.
5. 5
Alternate angles
TIPS
Alternate angles can
be identified by the Z
shape or Z shape.
Shaded angles are alternate angles.
Angles a and b also alternate angles.
6. 6
Interior angles
TIPS
Interior angles can be
identified by the Z
shape or Z shape.
Shaded angles are interior angles.
Angles c and d also interior angles.
7. 7
Determine that for parallel linesDDDeeettteeerrrmmmiiinnneee ttthhhaaattt fffooorrr pppaaarrraaalllllleeelll llliiinnneeesss::::
aaaa)))) ccccoooorrrrrrrreeeessssppppoooonnnnddddiiiinnnngggg aaaannnngggglllleeeessss aaaarrrreeee eeeeqqqquuuuaaaallll
Corresponding angles are equal
8. 8
Determine that for parallel linesDDDeeettteeerrrmmmiiinnneee ttthhhaaattt fffooorrr pppaaarrraaalllllleeelll llliiinnneeesss::::
bbbb)))) aaaalllltttteeeerrrrnnnnaaaatttteeee aaaannnngggglllleeeessss aaaarrrreeee eeeeqqqquuuuaaaallll
Alternate angles are equal
9. 9
Determine that for parallel linesDDDeeettteeerrrmmmiiinnneee ttthhhaaattt fffooorrr pppaaarrraaalllllleeelll llliiinnneeesss::::
cccc)))) tttthhhheeee ssssuuuummmm ooooffff iiiinnnntttteeeerrrriiiioooorrrr aaaannnngggglllleeeessss iiiissss 111188880000°°
The sum of interior angles is 180° or
interior angles are supplementary
10. 10
EEEExxxxeeeerrrrcccciiiisssseeee 1111....1111AAAA
1. For each of the following diagrams, list
i. four pairs of corresponding angles.
ii. two pairs of alternate angles.
iii. two pairs of interior angles.
a) b)
11. 11
Find the values of corresponding FFFiiinnnddd ttthhheee vvvaaallluuueeesss ooofff cccooorrrrrreeessspppooonnndddiiinnnggg aaaannnngggglllleeeessss,,,,
aaaalllltttteeeerrrrnnnnaaaatttteeee aaaannnngggglllleeeessss aaaannnndddd iiiinnnntttteeeerrrriiiioooorrrr aaaannnngggglllleeeessss,,,,
aaaassssssssoooocccciiiiaaaatttteeeedddd wwwwiiiitttthhhh ppppaaaarrrraaaalllllllleeeellll lllliiiinnnneeeessss
EEEExxxxaaaammmmpppplllleeee 1111
Find the value of x in each of the following.
a) b)
12. 12
a) The angles shown in the diagram are
corresponding angles.
Corresponding angles are equal.
Thus, x = 125°.
b) The angles shown in the diagram are interior
angles.
The sum of interior angles is 180°.
Thus, x + 74° = 180°
x = 180° - 74° = 106°
Solution:
14. 14
Determine if two given DDDeeettteeerrrmmmiiinnneee iiifff tttwwwooo gggiiivvveeennn lllliiiinnnneeeessss aaaarrrreeee ppppaaaarrrraaaalllllllleeeellll
bbbbaaaasssseeeedddd oooonnnn tttthhhheeee pppprrrrooooppppeeeerrrrttttiiiieeeessss ooooffff aaaannnngggglllleeeessss aaaassssssssoooocccciiiiaaaatttteeeedddd
wwwwiiiitttthhhh ttttrrrraaaannnnssssvvvveeeerrrrssssaaaallllssss
When two straight lines are intersected by a
transversal, and
• if the corresponding angles are equal, then the
two lines are parallel.
• if the alternate angles are equal, then the two
lines are parallel.
• if the interior angles are supplementary, then
the two lines are parallel.
15. 15
EEEExxxxaaaammmmpppplllleeee 2222
In the diagrams below, KLM, STU and LTV are
straight lines. Determine if the lines KLM and
STU are parallel.
a) b)
16. Corresponding angle
16
Solution:
a) The corresponding angles are equal.
Thus, the lines KLM and STU are parallel.
b) If the lines are parallel,
then, LTU = 153°.
Given STU is a straight line.
Hence, STU = 180°.
But LTU + LTS = 153° + 26°
= 179° 180°
Thus, the lines KLM and STU are not parallel.
18. 18
2. Determine which two lines are parallel in
each of the following.
a) b)
19. The diagram shows a parallelogram ABCD. Given
EDC is a straight line. Calculate all the angles in
the parallelogram.
19
Solve problems involving SSSooolllvvveee ppprrrooobbbllleeemmmsss iiinnnvvvooolllvvviiinnnggg tttthhhheeee pppprrrrooooppppeeeerrrrttttiiiieeeessss ooooffff
aaaannnngggglllleeeessss aaaassssssssoooocccciiiiaaaatttteeeedddd wwwwiiiitttthhhh ttttrrrraaaannnnssssvvvveeeerrrrssssaaaallllssss
24. 24
2. The following diagrams consist of straight
lines. Find the values of x and y.
a) b)
c)
25. Alternate angles Interior angles
25
SSSSuuuummmmmmmmaaaarrrryyyy LLLLIIIINNNNEEEESSSS AAAANNNNDDDD AAAANNNNGGGGLLLLEEEESSSS IIIIIIII
Parallel lines
* The lines that will never meet
* The lines that are always the same
distance apart.
Transversal
* A line that intersects two or
more parallel lines.
Transversal and parallel lines
Corresponding angles
Corresponding angles
* are equal
* can be identified by the
F shape.
Alternate angles
* are equal
* can be identified
by the Z shape.
Interior angles
* have a sum of 180°
* can be identified
by the U shape.
26. 26
Reference
Yoong Kwee Soon, Sim Kwang Yaw, Ding Hong
Eng, Noorliah Binti Ahmat, Lai Jun Siew,
Mathematics FORM 3, Ebiza Sdn. Bhd., 2004.
Prepared by: mohd khusaini majid Mrsm
Kota Kinabalu