ݺߣ

ݺߣShare a Scribd company logo
Observe que   x 2 dx =      xdx ·         xdx




                         Willian Vieira de Paula   Aula 3 - Integra¸˜o por partes
                                                                   ca
d
dx   [f (x)g (x)] = f (x)g (x) + f (x)g (x)




                           Willian Vieira de Paula   Aula 3 - Integra¸˜o por partes
                                                                     ca
d
dx   [f (x)g (x)] = f (x)g (x) + f (x)g (x)


                  d
“Integrando”      dx   [f (x)g (x)] dx =          [f (x)g (x) + f (x)g (x)] dx




                             Willian Vieira de Paula   Aula 3 - Integra¸˜o por partes
                                                                       ca
d
dx   [f (x)g (x)] = f (x)g (x) + f (x)g (x)


                  d
“Integrando”      dx   [f (x)g (x)] dx =            [f (x)g (x) + f (x)g (x)] dx



                        d
 f (x)g (x)dx =         dx   [f (x)g (x)] dx −           f (x)g (x)dx




                               Willian Vieira de Paula    Aula 3 - Integra¸˜o por partes
                                                                          ca
d
dx   [f (x)g (x)] = f (x)g (x) + f (x)g (x)


                  d
“Integrando”      dx   [f (x)g (x)] dx =            [f (x)g (x) + f (x)g (x)] dx



                        d
 f (x)g (x)dx =         dx   [f (x)g (x)] dx −           f (x)g (x)dx



Portanto      f (x)g (x)dx = f (x)g (x) −                  f (x)g (x)dx




                               Willian Vieira de Paula    Aula 3 - Integra¸˜o por partes
                                                                          ca
Exemplo: Calcule, usando integra¸˜o por partes:
                                ca

                                  xcosxdx




                       Willian Vieira de Paula   Aula 3 - Integra¸˜o por partes
                                                                 ca
¸˜
INTEGRACAO POR PARTES

                udv = uv −               vdu




               Willian Vieira de Paula   Aula 3 - Integra¸˜o por partes
                                                         ca

More Related Content

Cálculo II - Aula 3: Integração por partes

  • 1. Observe que x 2 dx = xdx · xdx Willian Vieira de Paula Aula 3 - Integra¸˜o por partes ca
  • 2. d dx [f (x)g (x)] = f (x)g (x) + f (x)g (x) Willian Vieira de Paula Aula 3 - Integra¸˜o por partes ca
  • 3. d dx [f (x)g (x)] = f (x)g (x) + f (x)g (x) d “Integrando” dx [f (x)g (x)] dx = [f (x)g (x) + f (x)g (x)] dx Willian Vieira de Paula Aula 3 - Integra¸˜o por partes ca
  • 4. d dx [f (x)g (x)] = f (x)g (x) + f (x)g (x) d “Integrando” dx [f (x)g (x)] dx = [f (x)g (x) + f (x)g (x)] dx d f (x)g (x)dx = dx [f (x)g (x)] dx − f (x)g (x)dx Willian Vieira de Paula Aula 3 - Integra¸˜o por partes ca
  • 5. d dx [f (x)g (x)] = f (x)g (x) + f (x)g (x) d “Integrando” dx [f (x)g (x)] dx = [f (x)g (x) + f (x)g (x)] dx d f (x)g (x)dx = dx [f (x)g (x)] dx − f (x)g (x)dx Portanto f (x)g (x)dx = f (x)g (x) − f (x)g (x)dx Willian Vieira de Paula Aula 3 - Integra¸˜o por partes ca
  • 6. Exemplo: Calcule, usando integra¸˜o por partes: ca xcosxdx Willian Vieira de Paula Aula 3 - Integra¸˜o por partes ca
  • 7. ¸˜ INTEGRACAO POR PARTES udv = uv − vdu Willian Vieira de Paula Aula 3 - Integra¸˜o por partes ca