際際滷

際際滷Share a Scribd company logo
COLLAPSE OF MASONRY VAULTS AND
            ARCHES USING NONLINEAR DISCRETE
                  NUMERICAL METHODS

                                      Rafael Bravo Pareja
                                       rbravo@ugr.es1
                                     Jos辿 Luis P辿rez Aparicio
                                   jopeap@upvnet.upv.es2
                      1 Department     of Structural Mechanics & Hydraulic Engineering
                                          University of Granada, SPAIN
                           2 Department  of Continuum and Structural Mechanics
                                  Polytechnic University of Valencia SPAIN




R.Bravo J.L.Perez-Aparicio (UGR-UPV)      Hola Vaults Using DDA (Complas 07)      6 September 2007   1 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   3 / 30
Introduction I

        Relatively new discipline in computational mechanics
        Numerical solutions of problems for which constitutive laws are
        not available
        Interactions of hundreds of blocks emerge physical properties of
        practical importance




        Masonry structures discontinuous. Discontinuous Deformation
        Analysis (DDA) better suited than Continuum Mechanics


R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   4 / 30
Introduction II

        Masonry structures composed of blocks. Stability achieved by
        contact & friction
                                                          qv




                                                                            qh
                                       C1




                                                                 C2
                                                      W


        2D experiments of masonry vaults (cut stone) at real scale
        described. Experimental & numerical results compared


R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)        6 September 2007   5 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   6 / 30
Formulation I
        Based on Newtonian Mechanics
        Hamiltons principle:

                                    i (Ui )
                                             =0;                    i = 1, ..., n
                                     Ui
        Discretization:



                Ui     = T Di



        Discrete equation of motion:

                                       (Di )
                                              =0;                   i = 1, ..., n
                                        Di
R.Bravo J.L.Perez-Aparicio (UGR-UPV)      Hola Vaults Using DDA (Complas 07)         6 September 2007   7 / 30
Formulation II
        Expansion provides matrix formulation:

                       即      
                     M Di + C Di + KDi = F (Di , t) ;                       i = 1, ..., n
        Initial conditions:


                                 Di (0) = Di0 ;                        
                                                               Di (0) = Di0

                  錚                                              錚駈 錚 錚 錚
                    
                   K11  
                        K12  
                             K13 揃 揃 揃                       
                                                             K1n    D1      
                                                                            F1
                  錚
                  錚     22
                        K    23 揃 揃 揃
                             K                               2n 錚 錚D2 錚 錚F2 錚
                                                             K 錚 錚 錚 錚 錚
                  錚
                  錚          
                             K33 揃 揃 揃                        錚 錚 錚 錚 錚
                                                             K3n 錚 錚D3 錚 = 錚F3 錚
                                 ..                           . 錚件 . 錚 錚 . 錚
                  錚                                              錚         錚 錚
                  錚
                  錚    Sim         .                        . 錚醐 . 錚 錚 . 錚
                                                              .      .       .
                                                             
                                                             Knn    Dn      
                                                                            Fn
        Offdiagonal terms indicate interaction  contact
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)           6 September 2007   8 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   9 / 30
Non Linear Frictional law and Algorithm
Implementation I
        Contact law models frictional behavior of rocky materials. (A.
        Nardin, G. Zavarise, BA. Schere鍖er (2003))
        Tangential behaviour. Sliding starts tangential force Ft  Fr =
        Coulomb friction (regularized) + Softening law H(s) (Non linear)
                            Fr = Ks 揃 s + a 揃 s2 + b 揃 s + c                      if Ft < Fr
                                                           H(s)

                       Fr = N 揃 tan  + a 揃 s2 + b 揃 s + c                        if Ft  Fr
   Ks tangential penalty.                                              Coulomb Law (Linear)
   a, b and c experimental                       Fr
                                                                                    H(s)
   data

       Ks = 107 N/m2                                                               Applied Non Linear Law
                                     6
         a = 1.5 揃 10                                     Stick Sliding
                                 5
         b = 2.0 揃 10
R.Bravo J.L.Perez-Aparicio (UGR-UPV)     Hola Vaults Using DDA (Complas 07)
                                                                              s            6 September 2007   10 / 30
Algorithm Implementation non linear frictional law II
        DDAs displacements s at each time step small  linearization:

                                                                 H(s0 )
                              H(s0 + s) = H(s0 ) +                      揃 s
                                                                  s
        Potential energy:

                                                            H(s0 )
                                  = H(s0 ) 揃 s +                  揃 s2
                                                              s
        Minimization:

                                         H(s0 )
                               = H(s0 ) +          揃 s
                          s                s
        Stiffness matrix and force vector:

                                             H(s0 )
                                       K =                   F = H(s0 )
                                               s
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)       6 September 2007   11 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   12 / 30
Masonry Bridges




       Stability through thousands of
       semirigid interacting blocks: High
       Computational Cost


R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   13 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   14 / 30
Initial Data


        Experiment of arches performed with properties (Delbeq 1982):
                                        Property               CASE 1           CASE 2
                                     Brick Density           2500 g/cm3       2500 g/cm3
                                    Young Modulus             1E9 N/m2         1E9 N/m2
                                   Poisson Modulus               0.2              0.2
                                     Friction Angle              30              30
                                       Cohesion                0 N/m2           0 N/m2
                                     Filling density         2000 kg/m3       2000 kg/m3
                                 Embankment density          1200 kg/m3       1200 kg/m3
                                Block ultimate stress Y       10 MPa           10 MPa

        Two different geometries. Properties uncertain (variability in real
        materials)




R.Bravo J.L.Perez-Aparicio (UGR-UPV)     Hola Vaults Using DDA (Complas 07)           6 September 2007   15 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   16 / 30
CASE 1. Collapse loads
           Ultimate collapse load with different number of joints




                   Load

                                                0.5



                                                                     N joints     Critical Load     Critical Load   Error
                      5          4                                               Experimental (kN)    DDA (kN)        %
                                                      6.7                7              250               280        12.2
Filling                                                                 15              206               210         1.6
                                                                        25              206               205        -0.8
                                                                        59              205               205         0.1
                                                                       199              205               205          0

                                          1
                            10


   R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)                 6 September 2007         17 / 30
Number of joints vs elastic behaviour
         Low number of blocks bad results in stress and strains
         Elastic block (area S and gravity centre (x0 , y0 ) puntual load
         (Fx ,Fy ) at (x,y)

               錚                 錚駈           錚      錚                      錚
             1 僚               0          x             (x  x0 )Fx
       S揃E 錚
             僚 1               0 錚醐      y 錚=錚          (y  y0 )Fy         錚
      1  僚2                  1僚
             0 0               2
                                        粒xy   (y  y0 )/2Fx + (x  x0 )/2Fy
       Elastic Stiffness Matrix[K ]                          Puntual Load Vector[F ]


                                                  Strain/Stresse Constant over each block
                xx0        僚(y y0 )             and dependent on (x,y)
  x         =    S揃E Fx  S揃E Fy
                                                  Averaged by blocks area S
                                 y
  y        =    僚(xx0 ) Fx + yS揃E0 Fy
                   S揃E                            Need to increase number of blocks to
                       y
粒xy    = (1    + 僚) yS揃E0 Fx + xx0 Fy
                                   S揃E            obtain accurate results
 R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)    6 September 2007   18 / 30
Example
         Vert.P. load Fy = 1kN at (x, y ) = (0.5, 1.75), L1 = 1m , L2 = 2m
         Material properties E = 105 N/m and 僚 = 0
         DDAs reactions  Contact forces. 3 Punt. loads
                Fy                     Fy


                (x,y)                  (x,y)
                                                                                                        DDA                     Analytical
        L2       (x0,y0)               (x0,y0)                       v N/mm2                         3.75 揃 103           v = Fy /A = 1 揃 103
                                                                                             v       3.75 揃 102           v = v /E = 1 揃 10
                                                                                                                                              2



                                                                                                            S tres s dis tributio
                                                                                                                                n
                L1              Fy/2        Fy/2                                    50
                                                                                                                                         Analytical
                                                                                                                                         DDA height 0.5m
                                                                                   100
                           Fy
                                                                                                                                         DDA height 0.1m

                                                                                   150


                                                                                   200
                                                                 S tres s (N/m2)



   8m                                                                              250


                                                                                   300


                                                                                   350


                                                                                   400
                        10m
                                                                                   450
                                                                                         0       1    2    3          4         5        6       7         8
                                                                                                               Y coordinate (m)

R.Bravo J.L.Perez-Aparicio (UGR-UPV)               Hola Vaults Using DDA (Complas 07)                                               6 September 2007           19 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   20 / 30
CASE 2
 Collapse analysis under:
        2.a) Variable embankment thickness
        2.b) Point loads

                                                                 Filling material + Embankment
                                  Embankment
                    h
                                                                        0.5

                            Filling material
                                                                                             Filling
                    8




                                   1                        15


 Lower and upper stability limits bounds obtained

R.Bravo J.L.Perez-Aparicio (UGR-UPV)       Hola Vaults Using DDA (Complas 07)               6 September 2007   21 / 30
CASE 2. Failure Modes
        Inestability
               Vertical < Horizontal Loads (LEFT). Peaks Elevation
               Vertical > Horizontal Loads (RIGHT)




               Formation of alternative hinges
        Failure compression
               Tresca Failure Criteria:
                                                 Y = (I  II )
               I , II principal stresses, Y yield stress. Other suitable criteria
               Druger Pracker (Owen in combined Finite Discrete Element
               Method).
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   22 / 30
CASE 2.a) Variable embankment. Failure Angles
        Comparison hinges angles
        LEFT: excessive horizontal loads
        RIGHT: excessive vertical loads
        Five hinges for both cases




                                                                                           78属

                                              60属



                                             18属                                         26属




        Numerical results agree well with experimental data

                                    Limit    Numerical         Experimental
                                   Lower    18 60 90        19 64 90
                                   Upper     0 26 78         0 37 78

R.Bravo J.L.Perez-Aparicio (UGR-UPV)    Hola Vaults Using DDA (Complas 07)    6 September 2007   23 / 30
CASE 2.a) Variable embankment. Safety Factor
        Relation between applied and failure loads (both numerical and
        experimental)
        3 Failure modes:
           1   Elevation of peak (low vertical loads)
           2   Compression failure (intermediate)
           3   Peaks descend (high vertical loads)
                                            6

                                                                                     DDA
                                                                             E xperimental
                                            5
                          S afety F actor




                                            4




                                            3




                                            2




                                            1




                                            0
                                                0       2       4       6        8     10    12
                                                               T hicknes s (m)

R.Bravo J.L.Perez-Aparicio (UGR-UPV)            Hola Vaults Using DDA (Complas 07)                6 September 2007   24 / 30
CASE 2.b) Point load & failure angles
        Response analysis under 2 variable concentrated loads
        (symmetric loads). Rest same as CASE 2. Embankment
        thickness 鍖xed to 0.5 m
        Lower bound limit same failure mode as case 2
        Formation of 3 hinges




                                                                  63属




                                    Limit    Numerical         Experimental
                                   Lower    18 60 90        19 64 90
                                   Upper      63 90            57 90
R.Bravo J.L.Perez-Aparicio (UGR-UPV)    Hola Vaults Using DDA (Complas 07)    6 September 2007   25 / 30
CASE 2.b) Point load & safety factor
        Similar failure as that of embankment load
        High sensitivity in initial branch: comparison not good (bad load
        transmission due to 鍖rst order formulation?)

                                         10
                                                                                             DDA
                                                                                     E xperimental
                                         8
                       S afety F actor




                                         6




                                         4




                                         2




                                         0
                                              0   20    40     60     80     100    120     140   160    180
                                                                       Load (kN)



R.Bravo J.L.Perez-Aparicio (UGR-UPV)                   Hola Vaults Using DDA (Complas 07)               6 September 2007   26 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   27 / 30
Conclusions
        Basic simulation of masonry behaviour under different conditions

        Results 鍖t well to experimental data

        3 failure modes simulated

        Tresca criteria for stress failure

        Need to improve higher order DDAs formulation

        Need to introduce statistical variability on input parameters

        Contact law applied to DDA


R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   28 / 30
Contents
 1    Introduction
 2    DDAs Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   29 / 30
Acknowledgements



 Authors gratitude the support offered by the following research
 projects:



        80019/A04 Ministerio de Fomento.


        E/03/B/F/PP-149.038. Ag. Leonardo da Vinci.




R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   30 / 30
Ad

Recommended

Complas
Complas
Rafael Bravo
Complas 2007
Complas 2007
Rafael Bravo
2024 Trend Updates: What Really Works In SEO & Content Marketing
2024 Trend Updates: What Really Works In SEO & Content Marketing
Search Engine Journal
Storytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design Process
Chiara Aliotta
Artificial Intelligence, Data and Competition SCHREPEL June 2024 OECD dis...
Artificial Intelligence, Data and Competition SCHREPEL June 2024 OECD dis...
OECD Directorate for Financial and Enterprise Affairs
How to Leverage AI to Boost Employee Wellness - Lydia Di Francesco - SocialHR...
How to Leverage AI to Boost Employee Wellness - Lydia Di Francesco - SocialHR...
SocialHRCamp
2024 State of Marketing Report by Hubspot
2024 State of Marketing Report by Hubspot
Marius Sescu
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
Expeed Software
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
Pixeldarts
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
marketingartwork
Skeleton Culture Code
Skeleton Culture Code
Skeleton Technologies
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
Neil Kimberley
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
contently
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
Albert Qian
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
Search Engine Journal
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
SpeakerHub
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
Clark Boyd
Getting into the tech field. what next
Getting into the tech field. what next
Tessa Mero
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Lily Ray
How to have difficult conversations
How to have difficult conversations
Rajiv Jayarajah, MAppComm, ACC
Introduction to Data Science
Introduction to Data Science
Christy Abraham Joy
Time Management & Productivity - Best Practices
Time Management & Productivity - Best Practices
Vit Horky
The six step guide to practical project management
The six step guide to practical project management
MindGenius
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
RachelPearson36
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Applitools
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
GetSmarter

More Related Content

Featured (20)

Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
Pixeldarts
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
marketingartwork
Skeleton Culture Code
Skeleton Culture Code
Skeleton Technologies
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
Neil Kimberley
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
contently
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
Albert Qian
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
Search Engine Journal
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
SpeakerHub
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
Clark Boyd
Getting into the tech field. what next
Getting into the tech field. what next
Tessa Mero
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Lily Ray
How to have difficult conversations
How to have difficult conversations
Rajiv Jayarajah, MAppComm, ACC
Introduction to Data Science
Introduction to Data Science
Christy Abraham Joy
Time Management & Productivity - Best Practices
Time Management & Productivity - Best Practices
Vit Horky
The six step guide to practical project management
The six step guide to practical project management
MindGenius
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
RachelPearson36
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Applitools
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
GetSmarter
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
Pixeldarts
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
marketingartwork
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
Neil Kimberley
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
contently
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
Albert Qian
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
Search Engine Journal
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
SpeakerHub
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
Clark Boyd
Getting into the tech field. what next
Getting into the tech field. what next
Tessa Mero
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Lily Ray
Time Management & Productivity - Best Practices
Time Management & Productivity - Best Practices
Vit Horky
The six step guide to practical project management
The six step guide to practical project management
MindGenius
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
RachelPearson36
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Applitools
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
GetSmarter

Complass

  • 1. COLLAPSE OF MASONRY VAULTS AND ARCHES USING NONLINEAR DISCRETE NUMERICAL METHODS Rafael Bravo Pareja rbravo@ugr.es1 Jos辿 Luis P辿rez Aparicio jopeap@upvnet.upv.es2 1 Department of Structural Mechanics & Hydraulic Engineering University of Granada, SPAIN 2 Department of Continuum and Structural Mechanics Polytechnic University of Valencia SPAIN R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 1 / 30
  • 2. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 3. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 4. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 5. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 6. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 7. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 8. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 9. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 10. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 11. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 3 / 30
  • 12. Introduction I Relatively new discipline in computational mechanics Numerical solutions of problems for which constitutive laws are not available Interactions of hundreds of blocks emerge physical properties of practical importance Masonry structures discontinuous. Discontinuous Deformation Analysis (DDA) better suited than Continuum Mechanics R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 4 / 30
  • 13. Introduction II Masonry structures composed of blocks. Stability achieved by contact & friction qv qh C1 C2 W 2D experiments of masonry vaults (cut stone) at real scale described. Experimental & numerical results compared R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 5 / 30
  • 14. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 6 / 30
  • 15. Formulation I Based on Newtonian Mechanics Hamiltons principle: i (Ui ) =0; i = 1, ..., n Ui Discretization: Ui = T Di Discrete equation of motion: (Di ) =0; i = 1, ..., n Di R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 7 / 30
  • 16. Formulation II Expansion provides matrix formulation: 即 M Di + C Di + KDi = F (Di , t) ; i = 1, ..., n Initial conditions: Di (0) = Di0 ; Di (0) = Di0 錚 錚駈 錚 錚 錚 K11 K12 K13 揃 揃 揃 K1n D1 F1 錚 錚 22 K 23 揃 揃 揃 K 2n 錚 錚D2 錚 錚F2 錚 K 錚 錚 錚 錚 錚 錚 錚 K33 揃 揃 揃 錚 錚 錚 錚 錚 K3n 錚 錚D3 錚 = 錚F3 錚 .. . 錚件 . 錚 錚 . 錚 錚 錚 錚 錚 錚 錚 Sim . . 錚醐 . 錚 錚 . 錚 . . . Knn Dn Fn Offdiagonal terms indicate interaction contact R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 8 / 30
  • 17. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 9 / 30
  • 18. Non Linear Frictional law and Algorithm Implementation I Contact law models frictional behavior of rocky materials. (A. Nardin, G. Zavarise, BA. Schere鍖er (2003)) Tangential behaviour. Sliding starts tangential force Ft Fr = Coulomb friction (regularized) + Softening law H(s) (Non linear) Fr = Ks 揃 s + a 揃 s2 + b 揃 s + c if Ft < Fr H(s) Fr = N 揃 tan + a 揃 s2 + b 揃 s + c if Ft Fr Ks tangential penalty. Coulomb Law (Linear) a, b and c experimental Fr H(s) data Ks = 107 N/m2 Applied Non Linear Law 6 a = 1.5 揃 10 Stick Sliding 5 b = 2.0 揃 10 R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) s 6 September 2007 10 / 30
  • 19. Algorithm Implementation non linear frictional law II DDAs displacements s at each time step small linearization: H(s0 ) H(s0 + s) = H(s0 ) + 揃 s s Potential energy: H(s0 ) = H(s0 ) 揃 s + 揃 s2 s Minimization: H(s0 ) = H(s0 ) + 揃 s s s Stiffness matrix and force vector: H(s0 ) K = F = H(s0 ) s R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 11 / 30
  • 20. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 12 / 30
  • 21. Masonry Bridges Stability through thousands of semirigid interacting blocks: High Computational Cost R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 13 / 30
  • 22. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 14 / 30
  • 23. Initial Data Experiment of arches performed with properties (Delbeq 1982): Property CASE 1 CASE 2 Brick Density 2500 g/cm3 2500 g/cm3 Young Modulus 1E9 N/m2 1E9 N/m2 Poisson Modulus 0.2 0.2 Friction Angle 30 30 Cohesion 0 N/m2 0 N/m2 Filling density 2000 kg/m3 2000 kg/m3 Embankment density 1200 kg/m3 1200 kg/m3 Block ultimate stress Y 10 MPa 10 MPa Two different geometries. Properties uncertain (variability in real materials) R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 15 / 30
  • 24. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 16 / 30
  • 25. CASE 1. Collapse loads Ultimate collapse load with different number of joints Load 0.5 N joints Critical Load Critical Load Error 5 4 Experimental (kN) DDA (kN) % 6.7 7 250 280 12.2 Filling 15 206 210 1.6 25 206 205 -0.8 59 205 205 0.1 199 205 205 0 1 10 R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 17 / 30
  • 26. Number of joints vs elastic behaviour Low number of blocks bad results in stress and strains Elastic block (area S and gravity centre (x0 , y0 ) puntual load (Fx ,Fy ) at (x,y) 錚 錚駈 錚 錚 錚 1 僚 0 x (x x0 )Fx S揃E 錚 僚 1 0 錚醐 y 錚=錚 (y y0 )Fy 錚 1 僚2 1僚 0 0 2 粒xy (y y0 )/2Fx + (x x0 )/2Fy Elastic Stiffness Matrix[K ] Puntual Load Vector[F ] Strain/Stresse Constant over each block xx0 僚(y y0 ) and dependent on (x,y) x = S揃E Fx S揃E Fy Averaged by blocks area S y y = 僚(xx0 ) Fx + yS揃E0 Fy S揃E Need to increase number of blocks to y 粒xy = (1 + 僚) yS揃E0 Fx + xx0 Fy S揃E obtain accurate results R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 18 / 30
  • 27. Example Vert.P. load Fy = 1kN at (x, y ) = (0.5, 1.75), L1 = 1m , L2 = 2m Material properties E = 105 N/m and 僚 = 0 DDAs reactions Contact forces. 3 Punt. loads Fy Fy (x,y) (x,y) DDA Analytical L2 (x0,y0) (x0,y0) v N/mm2 3.75 揃 103 v = Fy /A = 1 揃 103 v 3.75 揃 102 v = v /E = 1 揃 10 2 S tres s dis tributio n L1 Fy/2 Fy/2 50 Analytical DDA height 0.5m 100 Fy DDA height 0.1m 150 200 S tres s (N/m2) 8m 250 300 350 400 10m 450 0 1 2 3 4 5 6 7 8 Y coordinate (m) R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 19 / 30
  • 28. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 20 / 30
  • 29. CASE 2 Collapse analysis under: 2.a) Variable embankment thickness 2.b) Point loads Filling material + Embankment Embankment h 0.5 Filling material Filling 8 1 15 Lower and upper stability limits bounds obtained R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 21 / 30
  • 30. CASE 2. Failure Modes Inestability Vertical < Horizontal Loads (LEFT). Peaks Elevation Vertical > Horizontal Loads (RIGHT) Formation of alternative hinges Failure compression Tresca Failure Criteria: Y = (I II ) I , II principal stresses, Y yield stress. Other suitable criteria Druger Pracker (Owen in combined Finite Discrete Element Method). R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 22 / 30
  • 31. CASE 2.a) Variable embankment. Failure Angles Comparison hinges angles LEFT: excessive horizontal loads RIGHT: excessive vertical loads Five hinges for both cases 78属 60属 18属 26属 Numerical results agree well with experimental data Limit Numerical Experimental Lower 18 60 90 19 64 90 Upper 0 26 78 0 37 78 R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 23 / 30
  • 32. CASE 2.a) Variable embankment. Safety Factor Relation between applied and failure loads (both numerical and experimental) 3 Failure modes: 1 Elevation of peak (low vertical loads) 2 Compression failure (intermediate) 3 Peaks descend (high vertical loads) 6 DDA E xperimental 5 S afety F actor 4 3 2 1 0 0 2 4 6 8 10 12 T hicknes s (m) R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 24 / 30
  • 33. CASE 2.b) Point load & failure angles Response analysis under 2 variable concentrated loads (symmetric loads). Rest same as CASE 2. Embankment thickness 鍖xed to 0.5 m Lower bound limit same failure mode as case 2 Formation of 3 hinges 63属 Limit Numerical Experimental Lower 18 60 90 19 64 90 Upper 63 90 57 90 R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 25 / 30
  • 34. CASE 2.b) Point load & safety factor Similar failure as that of embankment load High sensitivity in initial branch: comparison not good (bad load transmission due to 鍖rst order formulation?) 10 DDA E xperimental 8 S afety F actor 6 4 2 0 0 20 40 60 80 100 120 140 160 180 Load (kN) R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 26 / 30
  • 35. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 27 / 30
  • 36. Conclusions Basic simulation of masonry behaviour under different conditions Results 鍖t well to experimental data 3 failure modes simulated Tresca criteria for stress failure Need to improve higher order DDAs formulation Need to introduce statistical variability on input parameters Contact law applied to DDA R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 28 / 30
  • 37. Contents 1 Introduction 2 DDAs Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 29 / 30
  • 38. Acknowledgements Authors gratitude the support offered by the following research projects: 80019/A04 Ministerio de Fomento. E/03/B/F/PP-149.038. Ag. Leonardo da Vinci. R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 30 / 30