際際滷

際際滷Share a Scribd company logo
Detection Of Dark Matter
(via Gravitational Lensing)
Arkajyoti Manna
Dept. of Physics
Ramakrishna Mission Vivekananda University
Belur,India
April 29, 2015
Abstract
Since the study of galaxy rotation curve by Vera C. Rubin et.al ,there
was an indication that there is a massive amount of mass exists in our
universe which is not visible to us.Apart from Flat Galaxy Rotation curve
there are several other experiments which con鍖rm the existance of the
so called dark matter.In this article we discuss how can one predict the
existance of dark matter and the mass distribution for it(only for sim-
ple cases) via Gravitational Lensing.We will use the bending of light
phenomenon predicted by General relativity.
1 Galaxy Rotation curve
Let us consider a spiral galaxy whose shape is like a disk of total mass Mr .If
the rotational velocity of a body near the edge of the galaxy vr of mass m,at a
distance r from the center of the disk.Then using Newtons Law of Gravitation
it can be shown that
mv2
r
r
=
GMrm
r2
 vr =
GMr
r
(1)
The dotted one is Keplerian orbital velocity distribution and solid one is the
observed one .
arkajyoti1@live.com
1
This is seen for several other galaxies also.
This indicates there exists a huge amount of mass in the halo of a galaxy.As the
dark matter doesnt emit any kind of electromagnetic radiation there is no way
to see it(thats why it is dark).But general relativity tells us that any kind of
mass(visible or not!) will produce curvature which can bend light coming from
any luminous source(i.e;stars,galaxies).We will use this idea in the next section.
2 Gravitational Lensing
From the study of null geodesics in Schwarzschild spacetime that light will bent
when it passes near any massive object by some de鍖nite amount corresponding
to its mass.It can be shown that the angle of de鍖ection is given by
bend =
2rs
b
(2)
where rs = 2GM
c2 ;rs and M stands for the Schwarzschild radius and mass of the
lensing body respectively.
2.1 Lens equation
We set up an equation relating the angular seperation of the source,its images
and the position of lens and observer.
2
Where observer O and lens L are on same axis.S is the source of light and I is
its image.For simplcity we will assume that the source and its image are in the
plane  to the lens-obs. axis(as the corresponding angles are so small that the
corection due to this are also small).As the various angles are so small,we will
use tan慮 慮.
If 留 is the total de鍖ection of light,then by inspection,it is evident that
慮Ds = 硫Ds + (留1 + 留2)DLS (3)
留1 + 留2 = 留 (4)
留 =
2rs
b
(5)
Here b is the distance between the light ray at  and lens.As the deviation
is in the order of arc-sec we approximately write b 両.then
留 =
2rs
両
(6)
慮 = 硫 +
1
慮
(2rsDLS
DLDs
)
1
2
2
(7)
慮 = 硫 +
1
慮
慮E
2
(8)
慮E = 2rsDLS
DLDs
1/2
(9)
(10)
3
where 慮E is the Einstein angle. As the eqn.8 is quadratic in 慮,so we will get
two images at an angular seperation
慮賊 =
1
2
[硫 賊 (硫2
+ 4慮2
E)1/2
] (11)
So clearly 慮+ > 0 and 慮 < 0.Hence we will get two images on two opposite
sides of L-O axis.Now if have these angles measurd and the angle between S and
O(硫) then we have the Einsetin Angle(慮E).And the mass of the lensing body
can be found by using eqn.9 as
rS =
2GML
c2
(12)
Typically for the lensing of a source by a galaxy (both at cosmological distance
1Gpc) the 慮E=1 arc-sec.But for a star (of mass nearly to our sun) within the
galaxy 慮E = 103
arc-sec, which can not be detected in contemporary telescopes.
But to detect and know the mass distribution of Dark matter in the halo of
galaxy we have to measure the Einstein angle 慮E.And the technique is called
Microlensing.Here we will not discuss the Strong lensing for which constrain
the Dark energy and the mass distribution of Dark matter.
2.2 Microlensing
If Prad Power radiated by the source isotropically and  is the solid angle
subtended by detector,then
dPrad
d
= S. RR2
(13)
(14)
where is Poynting vector.As the intensity I  dPrad
R2 then we can write
I = S. Rd.Then
I = k  (15)
where k is called surface brightness of the source(directly depenpends only on
source) and can not be a鍖ected by Gravitational lensing.The following diagram
may be helpful.
4
where MACHO(Massive Compact Halo object) is one of the possible candidate
for Dark matter,which moves in the halo of a galaxy.
The intensity due to the lens increases as more light rays comes to the earth
based detector than without the lens.Then(as the angular spread of the source
is preseved)
I賊
I0
=
β
0
= (慮賊/硫)(d慮賊/d硫) (16)
I賊
I0
=
1
4
硫
(硫2+4慮2
E )1/2 +
(硫2
+4慮2
E )
1/2
硫 賊 2 (17)
So the total intensity Itot(I+ + I) is given by
Itot
I0
=
1
2
硫
(硫2+4慮2
E )1/2 +
(硫2
+4慮2
E )
1/2
硫
(18)
so we can make the brightness better by making the angle 硫 small.This is ex-
tremely usefull when the two images can not be resolved in contemporary tele-
scopes.
2.3 Massive Compact Halo Object(MACHO)
As said before MACHO is one of the possible canditate for Dark matter.MACHO
consists of brown dwarfs,white dwarfs,small black holes,dead stars,etc which
moves in the halo of galaxy.Suppose there is a situation when a MACHO moves
close to a star in a nearby galaxy of ours(such as Large Magellanic Cloud) then
due to MACHOs mass we see lensing of that star.For this we essentially need
5
Microlensing.
In a typical Microlensing event we assume that a star (near to the MACHO
is moving behind it and we detect the magni鍖cation(Itot
I0
) so that the Ds
DL.And we can see the magni鍖cation changes time to time,which is induced by
Microlensing.
We will measure time in the scale of t0 = 慮E DL
Vtrans.
where t0 is the time taken by the star to cover angular dist. 慮E. and Vtrans is
the transverse vel. of the star.Then eqn. 18 becomes
Itot
I0
= a2
+2
a(a2+4)1/2 (19)
a =
硫
慮E
(20)
Now if we assume that the star is moving uniformly then
a = a2
min + ( t
t0
)2 1/2
(21)
a = a2
min + 2 1/2
(22)
Itot
I0
= (a2
min+2
)+2
(a2
min+2)1/2(a2
min+2)+4)1/2 (23)
Where ismeasuredintheunitsoft0 and amin = 硫min
慮 .硫min is the closest angular
seperation between MACHO and the star.This gives rise to di鍖erent light curves
in the following diagram.
6
3 Conclusion
In this article we only have discussed one of the possible canditate for Dark
matter i,e. MACHO.But recent studies shows that Dark matter is consists of
WIMP(Weakly Interacting Massive Particle) to a large proportion and from
various criterion WIMPs are very eligible canditate for Dark matter(which goes
beyond of our present discussion).
4 Reference
1.Gravity:An Introduction to Einsteins General Relativity :James Hartle
2.General Relativity :Straumann
7

More Related Content

What's hot (20)

Basics of special theory of relativity
Basics of special theory of relativityBasics of special theory of relativity
Basics of special theory of relativity
Abhishek Savarnya
Theoretical physics
Theoretical physicsTheoretical physics
Theoretical physics
David Halprin
Senior_Project
Senior_ProjectSenior_Project
Senior_Project
Kyle Donnelly
Fisica pau-cyl-2007-2019-gravitacion ordenado (1)
Fisica pau-cyl-2007-2019-gravitacion ordenado (1)Fisica pau-cyl-2007-2019-gravitacion ordenado (1)
Fisica pau-cyl-2007-2019-gravitacion ordenado (1)
Inmaculada Garc鱈a P辿rez
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeWhy Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
James Smith
gravitywaves
gravitywavesgravitywaves
gravitywaves
James G. O'Brien Ph.D.
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Rene Kotze
Science 2011-showalter-science.1202241
Science 2011-showalter-science.1202241Science 2011-showalter-science.1202241
Science 2011-showalter-science.1202241
S辿rgio Sacani
E3 - Stellar Distances
E3 - Stellar DistancesE3 - Stellar Distances
E3 - Stellar Distances
simonandisa
Strong Nuclear Force and Quantum Vacuum as Theory of Everything (NETWORK EQUI...
Strong Nuclear Force and Quantum Vacuum as Theory of Everything (NETWORK EQUI...Strong Nuclear Force and Quantum Vacuum as Theory of Everything (NETWORK EQUI...
Strong Nuclear Force and Quantum Vacuum as Theory of Everything (NETWORK EQUI...
SergioPrezFelipe
kuramoto
kuramotokuramoto
kuramoto
Thomas Glucksman
Ch11 ssm
Ch11 ssmCh11 ssm
Ch11 ssm
Marta D鱈az
Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfK
Dr Jim Kelly
The non gravitational_interactions_of_dark_matter_in_colliding_galaxy_clusters
The non gravitational_interactions_of_dark_matter_in_colliding_galaxy_clustersThe non gravitational_interactions_of_dark_matter_in_colliding_galaxy_clusters
The non gravitational_interactions_of_dark_matter_in_colliding_galaxy_clusters
S辿rgio Sacani
Gravitation
GravitationGravitation
Gravitation
Darwin Quinsaat
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
Lake Como School of Advanced Studies
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
Lake Como School of Advanced Studies
A Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical unitsA Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical units
Carlos Bella
Opportunities for students
Opportunities for students Opportunities for students
Opportunities for students
Rene Kotze
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
S辿rgio Sacani
Basics of special theory of relativity
Basics of special theory of relativityBasics of special theory of relativity
Basics of special theory of relativity
Abhishek Savarnya
Theoretical physics
Theoretical physicsTheoretical physics
Theoretical physics
David Halprin
Fisica pau-cyl-2007-2019-gravitacion ordenado (1)
Fisica pau-cyl-2007-2019-gravitacion ordenado (1)Fisica pau-cyl-2007-2019-gravitacion ordenado (1)
Fisica pau-cyl-2007-2019-gravitacion ordenado (1)
Inmaculada Garc鱈a P辿rez
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeWhy Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
James Smith
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Prof Jonathan Sievers (UKZN) NITheP Associate Workshop talk
Rene Kotze
Science 2011-showalter-science.1202241
Science 2011-showalter-science.1202241Science 2011-showalter-science.1202241
Science 2011-showalter-science.1202241
S辿rgio Sacani
E3 - Stellar Distances
E3 - Stellar DistancesE3 - Stellar Distances
E3 - Stellar Distances
simonandisa
Strong Nuclear Force and Quantum Vacuum as Theory of Everything (NETWORK EQUI...
Strong Nuclear Force and Quantum Vacuum as Theory of Everything (NETWORK EQUI...Strong Nuclear Force and Quantum Vacuum as Theory of Everything (NETWORK EQUI...
Strong Nuclear Force and Quantum Vacuum as Theory of Everything (NETWORK EQUI...
SergioPrezFelipe
Cosmology and Numbers jfK
Cosmology and Numbers jfKCosmology and Numbers jfK
Cosmology and Numbers jfK
Dr Jim Kelly
The non gravitational_interactions_of_dark_matter_in_colliding_galaxy_clusters
The non gravitational_interactions_of_dark_matter_in_colliding_galaxy_clustersThe non gravitational_interactions_of_dark_matter_in_colliding_galaxy_clusters
The non gravitational_interactions_of_dark_matter_in_colliding_galaxy_clusters
S辿rgio Sacani
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
Lake Como School of Advanced Studies
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
Lake Como School of Advanced Studies
A Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical unitsA Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical units
Carlos Bella
Opportunities for students
Opportunities for students Opportunities for students
Opportunities for students
Rene Kotze
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
Backreaction of hawking_radiation_on_a_gravitationally_collapsing_star_1_blac...
S辿rgio Sacani

Similar to Dark Matter (20)

General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and Cosmology
Pratik Tarafdar
GR.ppt
GR.pptGR.ppt
GR.ppt
MuhammadMazhar90
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...
EMU M.Sc. Thesis Presentation   "Dark Matter; Modification of f(R) or WIMPS M...EMU M.Sc. Thesis Presentation   "Dark Matter; Modification of f(R) or WIMPS M...
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...
Eastern Mediterranean University
Presentation.pptx
Presentation.pptxPresentation.pptx
Presentation.pptx
GOURABSAHOO11
Final_Paper
Final_PaperFinal_Paper
Final_Paper
Idrees Qasim
Overview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to CosmologyOverview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to Cosmology
Pratik Tarafdar
Astrophysics by RAVEENDRA BAGADE lecturer in Physics S.G Degree College Koppa...
Astrophysics by RAVEENDRA BAGADE lecturer in Physics S.G Degree College Koppa...Astrophysics by RAVEENDRA BAGADE lecturer in Physics S.G Degree College Koppa...
Astrophysics by RAVEENDRA BAGADE lecturer in Physics S.G Degree College Koppa...
Ravindra Bagade
Dark Matter
Dark MatterDark Matter
Dark Matter
Eastern Mediterranean University
I BSc Astrophysics20
I BSc Astrophysics20I BSc Astrophysics20
I BSc Astrophysics20
VIJAYAM19
On Continued Gravitational Contraction
On Continued Gravitational ContractionOn Continued Gravitational Contraction
On Continued Gravitational Contraction
S辿rgio Sacani
High Energy Astrophysics Dissertation
High Energy Astrophysics DissertationHigh Energy Astrophysics Dissertation
High Energy Astrophysics Dissertation
Alexander Booth
space blackhole
space blackholespace blackhole
space blackhole
ArunkumarChandraseka17
GM
GMGM
GM
Reece Boston
Special and General theory of Relativity Einstein
Special and General theory of Relativity EinsteinSpecial and General theory of Relativity Einstein
Special and General theory of Relativity Einstein
shubhy patel
Chapter9
Chapter9Chapter9
Chapter9
Charisse Marie Verallo
Science with small telescopes - exoplanets
Science with small telescopes - exoplanetsScience with small telescopes - exoplanets
Science with small telescopes - exoplanets
guest8aa6ebb
Interpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTInterpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWST
Alexander F. Mayer
lecture13
lecture13lecture13
lecture13
Hayato Shimabukuro
Fox m quantum_optics_an_introduction_photon antibunching1
Fox m quantum_optics_an_introduction_photon antibunching1Fox m quantum_optics_an_introduction_photon antibunching1
Fox m quantum_optics_an_introduction_photon antibunching1
Gabriel O'Brien
Mathematical application That have an wide range impact On issue such as s...
Mathematical   application That have an  wide range impact On issue such as s...Mathematical   application That have an  wide range impact On issue such as s...
Mathematical application That have an wide range impact On issue such as s...
puchson
General Relativity and Cosmology
General Relativity and CosmologyGeneral Relativity and Cosmology
General Relativity and Cosmology
Pratik Tarafdar
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...
EMU M.Sc. Thesis Presentation   "Dark Matter; Modification of f(R) or WIMPS M...EMU M.Sc. Thesis Presentation   "Dark Matter; Modification of f(R) or WIMPS M...
EMU M.Sc. Thesis Presentation "Dark Matter; Modification of f(R) or WIMPS M...
Eastern Mediterranean University
Presentation.pptx
Presentation.pptxPresentation.pptx
Presentation.pptx
GOURABSAHOO11
Overview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to CosmologyOverview of GTR and Introduction to Cosmology
Overview of GTR and Introduction to Cosmology
Pratik Tarafdar
Astrophysics by RAVEENDRA BAGADE lecturer in Physics S.G Degree College Koppa...
Astrophysics by RAVEENDRA BAGADE lecturer in Physics S.G Degree College Koppa...Astrophysics by RAVEENDRA BAGADE lecturer in Physics S.G Degree College Koppa...
Astrophysics by RAVEENDRA BAGADE lecturer in Physics S.G Degree College Koppa...
Ravindra Bagade
I BSc Astrophysics20
I BSc Astrophysics20I BSc Astrophysics20
I BSc Astrophysics20
VIJAYAM19
On Continued Gravitational Contraction
On Continued Gravitational ContractionOn Continued Gravitational Contraction
On Continued Gravitational Contraction
S辿rgio Sacani
High Energy Astrophysics Dissertation
High Energy Astrophysics DissertationHigh Energy Astrophysics Dissertation
High Energy Astrophysics Dissertation
Alexander Booth
Special and General theory of Relativity Einstein
Special and General theory of Relativity EinsteinSpecial and General theory of Relativity Einstein
Special and General theory of Relativity Einstein
shubhy patel
Science with small telescopes - exoplanets
Science with small telescopes - exoplanetsScience with small telescopes - exoplanets
Science with small telescopes - exoplanets
guest8aa6ebb
Interpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWSTInterpreting SDSS extragalactic data in the era of JWST
Interpreting SDSS extragalactic data in the era of JWST
Alexander F. Mayer
Fox m quantum_optics_an_introduction_photon antibunching1
Fox m quantum_optics_an_introduction_photon antibunching1Fox m quantum_optics_an_introduction_photon antibunching1
Fox m quantum_optics_an_introduction_photon antibunching1
Gabriel O'Brien
Mathematical application That have an wide range impact On issue such as s...
Mathematical   application That have an  wide range impact On issue such as s...Mathematical   application That have an  wide range impact On issue such as s...
Mathematical application That have an wide range impact On issue such as s...
puchson

Dark Matter

  • 1. Detection Of Dark Matter (via Gravitational Lensing) Arkajyoti Manna Dept. of Physics Ramakrishna Mission Vivekananda University Belur,India April 29, 2015 Abstract Since the study of galaxy rotation curve by Vera C. Rubin et.al ,there was an indication that there is a massive amount of mass exists in our universe which is not visible to us.Apart from Flat Galaxy Rotation curve there are several other experiments which con鍖rm the existance of the so called dark matter.In this article we discuss how can one predict the existance of dark matter and the mass distribution for it(only for sim- ple cases) via Gravitational Lensing.We will use the bending of light phenomenon predicted by General relativity. 1 Galaxy Rotation curve Let us consider a spiral galaxy whose shape is like a disk of total mass Mr .If the rotational velocity of a body near the edge of the galaxy vr of mass m,at a distance r from the center of the disk.Then using Newtons Law of Gravitation it can be shown that mv2 r r = GMrm r2 vr = GMr r (1) The dotted one is Keplerian orbital velocity distribution and solid one is the observed one . arkajyoti1@live.com 1
  • 2. This is seen for several other galaxies also. This indicates there exists a huge amount of mass in the halo of a galaxy.As the dark matter doesnt emit any kind of electromagnetic radiation there is no way to see it(thats why it is dark).But general relativity tells us that any kind of mass(visible or not!) will produce curvature which can bend light coming from any luminous source(i.e;stars,galaxies).We will use this idea in the next section. 2 Gravitational Lensing From the study of null geodesics in Schwarzschild spacetime that light will bent when it passes near any massive object by some de鍖nite amount corresponding to its mass.It can be shown that the angle of de鍖ection is given by bend = 2rs b (2) where rs = 2GM c2 ;rs and M stands for the Schwarzschild radius and mass of the lensing body respectively. 2.1 Lens equation We set up an equation relating the angular seperation of the source,its images and the position of lens and observer. 2
  • 3. Where observer O and lens L are on same axis.S is the source of light and I is its image.For simplcity we will assume that the source and its image are in the plane to the lens-obs. axis(as the corresponding angles are so small that the corection due to this are also small).As the various angles are so small,we will use tan慮 慮. If 留 is the total de鍖ection of light,then by inspection,it is evident that 慮Ds = 硫Ds + (留1 + 留2)DLS (3) 留1 + 留2 = 留 (4) 留 = 2rs b (5) Here b is the distance between the light ray at and lens.As the deviation is in the order of arc-sec we approximately write b 両.then 留 = 2rs 両 (6) 慮 = 硫 + 1 慮 (2rsDLS DLDs ) 1 2 2 (7) 慮 = 硫 + 1 慮 慮E 2 (8) 慮E = 2rsDLS DLDs 1/2 (9) (10) 3
  • 4. where 慮E is the Einstein angle. As the eqn.8 is quadratic in 慮,so we will get two images at an angular seperation 慮賊 = 1 2 [硫 賊 (硫2 + 4慮2 E)1/2 ] (11) So clearly 慮+ > 0 and 慮 < 0.Hence we will get two images on two opposite sides of L-O axis.Now if have these angles measurd and the angle between S and O(硫) then we have the Einsetin Angle(慮E).And the mass of the lensing body can be found by using eqn.9 as rS = 2GML c2 (12) Typically for the lensing of a source by a galaxy (both at cosmological distance 1Gpc) the 慮E=1 arc-sec.But for a star (of mass nearly to our sun) within the galaxy 慮E = 103 arc-sec, which can not be detected in contemporary telescopes. But to detect and know the mass distribution of Dark matter in the halo of galaxy we have to measure the Einstein angle 慮E.And the technique is called Microlensing.Here we will not discuss the Strong lensing for which constrain the Dark energy and the mass distribution of Dark matter. 2.2 Microlensing If Prad Power radiated by the source isotropically and is the solid angle subtended by detector,then dPrad d = S. RR2 (13) (14) where is Poynting vector.As the intensity I dPrad R2 then we can write I = S. Rd.Then I = k (15) where k is called surface brightness of the source(directly depenpends only on source) and can not be a鍖ected by Gravitational lensing.The following diagram may be helpful. 4
  • 5. where MACHO(Massive Compact Halo object) is one of the possible candidate for Dark matter,which moves in the halo of a galaxy. The intensity due to the lens increases as more light rays comes to the earth based detector than without the lens.Then(as the angular spread of the source is preseved) I賊 I0 = β 0 = (慮賊/硫)(d慮賊/d硫) (16) I賊 I0 = 1 4 硫 (硫2+4慮2 E )1/2 + (硫2 +4慮2 E ) 1/2 硫 賊 2 (17) So the total intensity Itot(I+ + I) is given by Itot I0 = 1 2 硫 (硫2+4慮2 E )1/2 + (硫2 +4慮2 E ) 1/2 硫 (18) so we can make the brightness better by making the angle 硫 small.This is ex- tremely usefull when the two images can not be resolved in contemporary tele- scopes. 2.3 Massive Compact Halo Object(MACHO) As said before MACHO is one of the possible canditate for Dark matter.MACHO consists of brown dwarfs,white dwarfs,small black holes,dead stars,etc which moves in the halo of galaxy.Suppose there is a situation when a MACHO moves close to a star in a nearby galaxy of ours(such as Large Magellanic Cloud) then due to MACHOs mass we see lensing of that star.For this we essentially need 5
  • 6. Microlensing. In a typical Microlensing event we assume that a star (near to the MACHO is moving behind it and we detect the magni鍖cation(Itot I0 ) so that the Ds DL.And we can see the magni鍖cation changes time to time,which is induced by Microlensing. We will measure time in the scale of t0 = 慮E DL Vtrans. where t0 is the time taken by the star to cover angular dist. 慮E. and Vtrans is the transverse vel. of the star.Then eqn. 18 becomes Itot I0 = a2 +2 a(a2+4)1/2 (19) a = 硫 慮E (20) Now if we assume that the star is moving uniformly then a = a2 min + ( t t0 )2 1/2 (21) a = a2 min + 2 1/2 (22) Itot I0 = (a2 min+2 )+2 (a2 min+2)1/2(a2 min+2)+4)1/2 (23) Where ismeasuredintheunitsoft0 and amin = 硫min 慮 .硫min is the closest angular seperation between MACHO and the star.This gives rise to di鍖erent light curves in the following diagram. 6
  • 7. 3 Conclusion In this article we only have discussed one of the possible canditate for Dark matter i,e. MACHO.But recent studies shows that Dark matter is consists of WIMP(Weakly Interacting Massive Particle) to a large proportion and from various criterion WIMPs are very eligible canditate for Dark matter(which goes beyond of our present discussion). 4 Reference 1.Gravity:An Introduction to Einsteins General Relativity :James Hartle 2.General Relativity :Straumann 7