ݺߣ

ݺߣShare a Scribd company logo
M A C H I N E L E A R N I N G
D I A G N O S E C A N C E R
H O W T O
W I T H
A N D S H O W T H A T I T I S C O O L A N D A C C E S S I B L E
T O A N Y D E V E L O P E R ~ S I M O N VA N D Y K
Diagnosing Cancer with Machine Learning
C h a r l e s
B a b b a g e
L E G E N D
A D A
L O V E L A C E
L E G E N D
M O D E L SW H aT
A r e ?
C o m p u t e r
D e s k t o p
s e r v e r
w i n d o w s
C l i p b o a r d
F i l e f o l d e r
A r t i f i c i a l
N e u r a l
N e t w o r k
T h e
C o n s i d e r
t h e n e u r o n
~ 1 0 b i l l i o n
E x c i t e d / i n h i b i t e d
e l a s t i c
“a p p r o x i m at e t h e
g e n e r a l i s at i o n o f
k n o w l e d g e a n d d i s c o v e r y —
t h e y l e a r n ”
A . t u r i n G o n
l e a r n i n g
“ I n s t e a d o f t r y i n g t o p r o d u c e a p r o g r a m t o
s i m u l at e t h e a d u lt m i n d , w h y n o t r at h e r
t r y t o p r o d u c e o n e w h i c h s i m u l at e s t h e
c h i l d ’ s . I f t h i s w e r e t h e n s u b j e c t e d t o a n
a p p r o p r i at e c o u r s e o f e d u c at i o n o n e w o u l d
o b ta i n t h e a d u lt m i n d . ” ~ A . T u r i n g
p e r c e p t r o n
f ( n e t )
n e t = 0 . 1 * 0 . 9 + 0 . 7 * 0 . 4 + 1 . 3 * 0 . 6
0 . 7
0 . 1
1 . 3
I n p u t s
0 . 9
0 . 4
0 . 6
W e i g h t s
0 . 8 5 o u t p u t
?
p e r c e p t r o n
f ( n e t )
n e t = v 1 * w 1 + v 2 * w 2 + v 3 * w 3
v 2
v 1
v 3
I n p u t s
w 1
w 2
w 3
W e i g h t s
o u t
o u t p u t
o u t = F ( n e t )
n e t = v 1 * w 1 + v 2 * w 2 + v 3 * w 3
SIgmoid
0 . 0
0 . 5
1 . 0
0 . 8 5
o u t = F ( n e t )
STEP
0 . 0
0 . 5
1 . 0
0 . 8 5
e x a m p l e : o r
v1 v2 target
0 0 0
0 1 1
1 0 1
1 1 1
v 1
v 2
w 1
w 2
o u t
g u e s s t h e
w e i g h t s
e x a m p l e : o r
v1 v2 target
0 0 0
0 1 1
1 0 1
1 1 1
0
0
0
0
n e t = 0
n e t = v 1 .w 1
+ v 2 .w 2
( w 1 )
( w 2 )
0
w e ’ r e
g o o d !
v1 v2 target
0 0 0
0 1 1
1 0 1
1 1 1
e x a m p l e : o r
0
1
0
0
n e t = v 1 .w 1
+ v 2 .w 2
( w 1 )
( w 2 )
0
n e t = 0
v1 v2 target
0 0 0
0 1 1
1 0 1
1 1 1
e x a m p l e : o r
0
1
0
1
n e t = v 1 .w 1
+ v 2 .w 2
( w 1 )
( w 2 )
1
n e t = 1
w e ’ r e
g o o d !
v1 v2 target
0 0 0
0 1 1
1 0 1
1 1 1
e x a m p l e : o r
1
0
0
1
n e t = v 1 .w 1
+ v 2 .w 2
( w 1 )
( w 2 )
0
n e t = 0
v1 v2 target
0 0 0
0 1 1
1 0 1
1 1 1
e x a m p l e : o r
1
0
1
1
n e t = v 1 .w 1
+ v 2 .w 2
( w 1 )
( w 2 )
1
n e t = 1
w e ’ r e
g o o d !
v1 v2 target
0 0 0
0 1 1
1 0 1
1 1 1
e x a m p l e : o r
1
1
1
1
n e t = v 1 .w 1
+ v 2 .w 2
w e ’ r e
g o o d !
( w 1 )
( w 2 )
1
n e t = 2
v1 v2 target
0 0 0
0 1 1
1 0 1
1 1 1
o r x o r
v1 v2 target
0 0 0
0 1 1
1 0 1
1 1 0
0
0
0
0
1 1
1 1
C o m p o s e t h e m
v 1
v 2
v 3
P e r c e p t r o n s
i n p u t s
o u t p u t
f
f
f
d i a g n o s i n g
c a n c e r
f o r r e a l s
cell radius … texture DIAGNOsis
1.23 … 4.56 Malignant
… … … …
0.41 … 2.3 Benign
c l a s s i f i c at i o n d ata
J a m e s
S a r a h
j e f f
at t r i b u t e s
A t t r i b u t e s a r e c o m p u t e d
f r o m a d i g i t i z e d i m a g e o f
a f i n e n e e d l e a s p i r at e
( F N A ) o f a b r e a s t m a s s .
t r a i n i n g
17.99 10.38 … 1.78 M
ta r g e to u t p u t
M
1.34 0.8 … 1.8 B B
2.7 4.o2 … 2.5 M B
6.52 1.33 … 5.91 B B
7 5 %
e va l u at i o n
M
o u t p u t
1.34 0.8 … 1.8
t r a i n e d
n e t w o r k
u n s e e n d ata
s e a r c h
g r a d i e n t d e s c e n t
r p r o p
s i m u l at e d a n n e a l i n g
g e n e t i c a l g o r i t h m
d i f f e r e n t i a l e v o l u t i o n
p a r t i c l e s w a r m o p t i m i z e r
c o e v o l u t i o n
a n t s y s t e m
q p r o p
m o n t e c a r l o
$ d e m o
h t t p s : // i n t e l l i g e n c e - r u b y f u z a 2 0 1 5 . h e r o k u a p p. c o m /
c a n c e ri s
d e s t r u c t i v e
b u td i a g n o s i s
i s s o lva b l e
s t o c h a s t i c
m a c h i n e s
t h e r i s e o f
“ I f a m a c h i n e i s e x p e c t e d
t o b e i n f a l l i b l e , i t c a n n o t
a l s o b e i n t e l l i g e n t ”
— A . T u r i n g
! @ s i e f i
s i g h m i n / d i a g n o s i n g - c a n c e r - w i t h - a i
s i m o n @ p l at f o r m 4 5 . c o m
"
#
q u e s t i o n s
fin.
Ad

Recommended

Educación ambiental
Educación ambiental
Pablo Merlo Díaz
Educación ambiental
Educación ambiental
Pablo Merlo Díaz
Better than Google?
Better than Google?
Shahensha Wahab
UGC University Grants Commission
UGC University Grants Commission
aanyasingh11
DC Crcts MCQ
DC Crcts MCQ
Arvinderbrar
Neat Document-I B E R D R O L A Vinogradov
Neat Document-I B E R D R O L A Vinogradov
Viktor Portnoy
Video game market and trendsinfographicst
Video game market and trendsinfographicst
Icônes Ecoles Créatives
Why should I invest in property?
Why should I invest in property?
Lifestyle Property People
Sulzer ratier staubli manual MONTAJE REGLAJE REPARACION
Sulzer ratier staubli manual MONTAJE REGLAJE REPARACION
fredy casilla
Maisdigital carlos
Maisdigital carlos
carlosrenatomsantos39
UGC NET
UGC NET
aanyasingh11
Top asphalt plant manufacturers throughout the world
Top asphalt plant manufacturers throughout the world
thomaspyr
Dept of Finance Reference
Dept of Finance Reference
Ben Murray
Game genre and synopsis
Game genre and synopsis
LewisB2013
Week 12. There is/there are.
Week 12. There is/there are.
FernandaHiguera5
Fear and Trembling - 15 December 2019 - Clayton Nel
Fear and Trembling - 15 December 2019 - Clayton Nel
El Shaddai Christian Church
Certificate HSE Borouge - Scanned by CamScanner
Certificate HSE Borouge - Scanned by CamScanner
subhashish sengupta
CIVIL ENGINEERING QUESTION PAPER SEMESTER FIVE (2014)
CIVIL ENGINEERING QUESTION PAPER SEMESTER FIVE (2014)
Sabik Np
Distributor kursi roda
Distributor kursi roda
Ranjang Pasien
Classification and Prediction of Heart Disease from Diabetes Patients using H...
Classification and Prediction of Heart Disease from Diabetes Patients using H...
ijcoa
Medical data and text mining - Linking diseases, drugs, and adverse reactions
Medical data and text mining - Linking diseases, drugs, and adverse reactions
Lars Juhl Jensen

More Related Content

What's hot (20)

DC Crcts MCQ
DC Crcts MCQ
Arvinderbrar
Neat Document-I B E R D R O L A Vinogradov
Neat Document-I B E R D R O L A Vinogradov
Viktor Portnoy
Video game market and trendsinfographicst
Video game market and trendsinfographicst
Icônes Ecoles Créatives
Why should I invest in property?
Why should I invest in property?
Lifestyle Property People
Sulzer ratier staubli manual MONTAJE REGLAJE REPARACION
Sulzer ratier staubli manual MONTAJE REGLAJE REPARACION
fredy casilla
Maisdigital carlos
Maisdigital carlos
carlosrenatomsantos39
UGC NET
UGC NET
aanyasingh11
Top asphalt plant manufacturers throughout the world
Top asphalt plant manufacturers throughout the world
thomaspyr
Dept of Finance Reference
Dept of Finance Reference
Ben Murray
Game genre and synopsis
Game genre and synopsis
LewisB2013
Week 12. There is/there are.
Week 12. There is/there are.
FernandaHiguera5
Fear and Trembling - 15 December 2019 - Clayton Nel
Fear and Trembling - 15 December 2019 - Clayton Nel
El Shaddai Christian Church
Certificate HSE Borouge - Scanned by CamScanner
Certificate HSE Borouge - Scanned by CamScanner
subhashish sengupta
CIVIL ENGINEERING QUESTION PAPER SEMESTER FIVE (2014)
CIVIL ENGINEERING QUESTION PAPER SEMESTER FIVE (2014)
Sabik Np
Distributor kursi roda
Distributor kursi roda
Ranjang Pasien

Viewers also liked (12)

Classification and Prediction of Heart Disease from Diabetes Patients using H...
Classification and Prediction of Heart Disease from Diabetes Patients using H...
ijcoa
Medical data and text mining - Linking diseases, drugs, and adverse reactions
Medical data and text mining - Linking diseases, drugs, and adverse reactions
Lars Juhl Jensen
Applying Machine Learning Techniques to Breast Cancer Research - by Benjamin ...
Applying Machine Learning Techniques to Breast Cancer Research - by Benjamin ...
PAPIs.io
Comprehensive Survey of Data Classification & Prediction Techniques
Comprehensive Survey of Data Classification & Prediction Techniques
ijsrd.com
Breast cancer diagnosis and recurrence prediction using machine learning tech...
Breast cancer diagnosis and recurrence prediction using machine learning tech...
eSAT Journals
Supervised Machine Learning: A Review of Classification ...
Supervised Machine Learning: A Review of Classification ...
butest
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Editor IJCATR
1.PPT (1.PREDICTION OF DISEASES New)
1.PPT (1.PREDICTION OF DISEASES New)
Jashvant Shah
Heart Disease Prediction Using Data Mining Techniques
Heart Disease Prediction Using Data Mining Techniques
IJRES Journal
Detection of heart diseases by data mining
Detection of heart diseases by data mining
Abheepsa Pattnaik
Data Mining - Classification Of Breast Cancer Dataset using Decision Tree Ind...
Data Mining - Classification Of Breast Cancer Dataset using Decision Tree Ind...
Sunil Nair
Efficient Disease Classifier Using Data Mining Techniques: Refinement of Rand...
Efficient Disease Classifier Using Data Mining Techniques: Refinement of Rand...
IOSR Journals
Classification and Prediction of Heart Disease from Diabetes Patients using H...
Classification and Prediction of Heart Disease from Diabetes Patients using H...
ijcoa
Medical data and text mining - Linking diseases, drugs, and adverse reactions
Medical data and text mining - Linking diseases, drugs, and adverse reactions
Lars Juhl Jensen
Applying Machine Learning Techniques to Breast Cancer Research - by Benjamin ...
Applying Machine Learning Techniques to Breast Cancer Research - by Benjamin ...
PAPIs.io
Comprehensive Survey of Data Classification & Prediction Techniques
Comprehensive Survey of Data Classification & Prediction Techniques
ijsrd.com
Breast cancer diagnosis and recurrence prediction using machine learning tech...
Breast cancer diagnosis and recurrence prediction using machine learning tech...
eSAT Journals
Supervised Machine Learning: A Review of Classification ...
Supervised Machine Learning: A Review of Classification ...
butest
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Feature Extraction Techniques and Classification Algorithms for EEG Signals t...
Editor IJCATR
1.PPT (1.PREDICTION OF DISEASES New)
1.PPT (1.PREDICTION OF DISEASES New)
Jashvant Shah
Heart Disease Prediction Using Data Mining Techniques
Heart Disease Prediction Using Data Mining Techniques
IJRES Journal
Detection of heart diseases by data mining
Detection of heart diseases by data mining
Abheepsa Pattnaik
Data Mining - Classification Of Breast Cancer Dataset using Decision Tree Ind...
Data Mining - Classification Of Breast Cancer Dataset using Decision Tree Ind...
Sunil Nair
Efficient Disease Classifier Using Data Mining Techniques: Refinement of Rand...
Efficient Disease Classifier Using Data Mining Techniques: Refinement of Rand...
IOSR Journals
Ad

Diagnosing Cancer with Machine Learning

  • 1. M A C H I N E L E A R N I N G D I A G N O S E C A N C E R H O W T O W I T H A N D S H O W T H A T I T I S C O O L A N D A C C E S S I B L E T O A N Y D E V E L O P E R ~ S I M O N VA N D Y K
  • 3. C h a r l e s B a b b a g e L E G E N D
  • 4. A D A L O V E L A C E L E G E N D
  • 5. M O D E L SW H aT A r e ? C o m p u t e r D e s k t o p s e r v e r w i n d o w s C l i p b o a r d F i l e f o l d e r
  • 6. A r t i f i c i a l N e u r a l N e t w o r k T h e
  • 7. C o n s i d e r t h e n e u r o n ~ 1 0 b i l l i o n E x c i t e d / i n h i b i t e d e l a s t i c
  • 8. “a p p r o x i m at e t h e g e n e r a l i s at i o n o f k n o w l e d g e a n d d i s c o v e r y — t h e y l e a r n ”
  • 9. A . t u r i n G o n l e a r n i n g
  • 10. “ I n s t e a d o f t r y i n g t o p r o d u c e a p r o g r a m t o s i m u l at e t h e a d u lt m i n d , w h y n o t r at h e r t r y t o p r o d u c e o n e w h i c h s i m u l at e s t h e c h i l d ’ s . I f t h i s w e r e t h e n s u b j e c t e d t o a n a p p r o p r i at e c o u r s e o f e d u c at i o n o n e w o u l d o b ta i n t h e a d u lt m i n d . ” ~ A . T u r i n g
  • 11. p e r c e p t r o n f ( n e t ) n e t = 0 . 1 * 0 . 9 + 0 . 7 * 0 . 4 + 1 . 3 * 0 . 6 0 . 7 0 . 1 1 . 3 I n p u t s 0 . 9 0 . 4 0 . 6 W e i g h t s 0 . 8 5 o u t p u t ?
  • 12. p e r c e p t r o n f ( n e t ) n e t = v 1 * w 1 + v 2 * w 2 + v 3 * w 3 v 2 v 1 v 3 I n p u t s w 1 w 2 w 3 W e i g h t s o u t o u t p u t
  • 13. o u t = F ( n e t ) n e t = v 1 * w 1 + v 2 * w 2 + v 3 * w 3 SIgmoid 0 . 0 0 . 5 1 . 0 0 . 8 5
  • 14. o u t = F ( n e t ) STEP 0 . 0 0 . 5 1 . 0 0 . 8 5
  • 15. e x a m p l e : o r v1 v2 target 0 0 0 0 1 1 1 0 1 1 1 1 v 1 v 2 w 1 w 2 o u t g u e s s t h e w e i g h t s
  • 16. e x a m p l e : o r v1 v2 target 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 n e t = 0 n e t = v 1 .w 1 + v 2 .w 2 ( w 1 ) ( w 2 ) 0 w e ’ r e g o o d !
  • 17. v1 v2 target 0 0 0 0 1 1 1 0 1 1 1 1 e x a m p l e : o r 0 1 0 0 n e t = v 1 .w 1 + v 2 .w 2 ( w 1 ) ( w 2 ) 0 n e t = 0
  • 18. v1 v2 target 0 0 0 0 1 1 1 0 1 1 1 1 e x a m p l e : o r 0 1 0 1 n e t = v 1 .w 1 + v 2 .w 2 ( w 1 ) ( w 2 ) 1 n e t = 1 w e ’ r e g o o d !
  • 19. v1 v2 target 0 0 0 0 1 1 1 0 1 1 1 1 e x a m p l e : o r 1 0 0 1 n e t = v 1 .w 1 + v 2 .w 2 ( w 1 ) ( w 2 ) 0 n e t = 0
  • 20. v1 v2 target 0 0 0 0 1 1 1 0 1 1 1 1 e x a m p l e : o r 1 0 1 1 n e t = v 1 .w 1 + v 2 .w 2 ( w 1 ) ( w 2 ) 1 n e t = 1 w e ’ r e g o o d !
  • 21. v1 v2 target 0 0 0 0 1 1 1 0 1 1 1 1 e x a m p l e : o r 1 1 1 1 n e t = v 1 .w 1 + v 2 .w 2 w e ’ r e g o o d ! ( w 1 ) ( w 2 ) 1 n e t = 2
  • 22. v1 v2 target 0 0 0 0 1 1 1 0 1 1 1 1 o r x o r v1 v2 target 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1
  • 23. C o m p o s e t h e m v 1 v 2 v 3 P e r c e p t r o n s i n p u t s o u t p u t f f f
  • 24. d i a g n o s i n g c a n c e r f o r r e a l s
  • 25. cell radius … texture DIAGNOsis 1.23 … 4.56 Malignant … … … … 0.41 … 2.3 Benign c l a s s i f i c at i o n d ata J a m e s S a r a h j e f f at t r i b u t e s
  • 26. A t t r i b u t e s a r e c o m p u t e d f r o m a d i g i t i z e d i m a g e o f a f i n e n e e d l e a s p i r at e ( F N A ) o f a b r e a s t m a s s .
  • 27. t r a i n i n g 17.99 10.38 … 1.78 M ta r g e to u t p u t M 1.34 0.8 … 1.8 B B 2.7 4.o2 … 2.5 M B 6.52 1.33 … 5.91 B B 7 5 %
  • 28. e va l u at i o n M o u t p u t 1.34 0.8 … 1.8 t r a i n e d n e t w o r k u n s e e n d ata
  • 29. s e a r c h g r a d i e n t d e s c e n t r p r o p s i m u l at e d a n n e a l i n g g e n e t i c a l g o r i t h m d i f f e r e n t i a l e v o l u t i o n p a r t i c l e s w a r m o p t i m i z e r c o e v o l u t i o n a n t s y s t e m q p r o p m o n t e c a r l o
  • 30. $ d e m o h t t p s : // i n t e l l i g e n c e - r u b y f u z a 2 0 1 5 . h e r o k u a p p. c o m /
  • 31. c a n c e ri s d e s t r u c t i v e
  • 32. b u td i a g n o s i s i s s o lva b l e
  • 33. s t o c h a s t i c m a c h i n e s t h e r i s e o f
  • 34. “ I f a m a c h i n e i s e x p e c t e d t o b e i n f a l l i b l e , i t c a n n o t a l s o b e i n t e l l i g e n t ” — A . T u r i n g
  • 35. ! @ s i e f i s i g h m i n / d i a g n o s i n g - c a n c e r - w i t h - a i s i m o n @ p l at f o r m 4 5 . c o m " # q u e s t i o n s
  • 36. fin.