際際滷

際際滷Share a Scribd company logo
Basic Differentiation Formulas
In the table below, ?  0 B and @  1B represent differentiable functions of B
Derivative of a constant
Derivative of constant
multiple
Derivative of sum or
difference

..B
.
.B

 !
(-?)  -

.
.B

(?  @) 



.@
.B

Product Rule

.
.B

.@
(?@  ? .B  @

.?
.B

Quotient Rule

.
.B

(?) 
@

Chain Rule

.C
.B



.?
.B
.?
.B

We could also write -0  w  -0 w , and could use
the prime notion in the other formulas as well)

.@
@ .? ? .B
.B
#
@

.C .?
.? .B

.
.B

?8  8?8"

+B  (ln +) +B

.
.B

+?  (ln +) +?

.
.B

/B  /B

.
.B

/?  /?

.
.B

(If +  / )

.
.B

.
.B

(If + = / )

B8  8B8"

log+ B 

.
.B

log+ ? 

.
.B

ln B 

.
.B

ln ? 

.
.B

sin B  cos B

.
.B

sin ?  cos ?

.
.B

cos B   sin B

.
.B

cos ?   sin ?

.
.B

tan B  sec# B

.
.B

tan ?  sec# ?

.
.B

cot B   csc# B

.
.B

cot ?   csc# ?

.
.B

sec B  sec B tan B

.
.B

sec ?  sec ? tan ?

.
.B

csc B   csc B cot B

.
.B

csc ?   csc ? cot ?

.
.B

sin" B 

.
.B

sin" ? 

.
.B

arcsin B 

.
.B

arcsin ? 

.
.B

tan" B 

.
.B

tan" ? 

.
.B

1
(ln +) B

1
B

1
"B#

arctan B =

1
"B#

.
.B

.?
.B

.?
.B

.?
.B
.?
1
(ln +) ? .B

1 .?
? .B

.?
.B
.?
.B

.?
.B

1
"?#

arctan ? =

.?
.B
.?
.B

.?
.B

.?
1
"?# .B

.?
.B

More Related Content

Diffform

  • 1. Basic Differentiation Formulas In the table below, ? 0 B and @ 1B represent differentiable functions of B Derivative of a constant Derivative of constant multiple Derivative of sum or difference ..B . .B ! (-?) - . .B (? @) .@ .B Product Rule . .B .@ (?@ ? .B @ .? .B Quotient Rule . .B (?) @ Chain Rule .C .B .? .B .? .B We could also write -0 w -0 w , and could use the prime notion in the other formulas as well) .@ @ .? ? .B .B # @ .C .? .? .B . .B ?8 8?8" +B (ln +) +B . .B +? (ln +) +? . .B /B /B . .B /? /? . .B (If + / ) . .B . .B (If + = / ) B8 8B8" log+ B . .B log+ ? . .B ln B . .B ln ? . .B sin B cos B . .B sin ? cos ? . .B cos B sin B . .B cos ? sin ? . .B tan B sec# B . .B tan ? sec# ? . .B cot B csc# B . .B cot ? csc# ? . .B sec B sec B tan B . .B sec ? sec ? tan ? . .B csc B csc B cot B . .B csc ? csc ? cot ? . .B sin" B . .B sin" ? . .B arcsin B . .B arcsin ? . .B tan" B . .B tan" ? . .B 1 (ln +) B 1 B 1 "B# arctan B = 1 "B# . .B .? .B .? .B .? .B .? 1 (ln +) ? .B 1 .? ? .B .? .B .? .B .? .B 1 "?# arctan ? = .? .B .? .B .? .B .? 1 "?# .B .? .B