Diffform
- 1. Basic Differentiation Formulas
In the table below, ? 0 B and @ 1B represent differentiable functions of B
Derivative of a constant
Derivative of constant
multiple
Derivative of sum or
difference
..B
.
.B
!
(-?) -
.
.B
(? @)
.@
.B
Product Rule
.
.B
.@
(?@ ? .B @
.?
.B
Quotient Rule
.
.B
(?)
@
Chain Rule
.C
.B
.?
.B
.?
.B
We could also write -0 w -0 w , and could use
the prime notion in the other formulas as well)
.@
@ .? ? .B
.B
#
@
.C .?
.? .B
.
.B
?8 8?8"
+B (ln +) +B
.
.B
+? (ln +) +?
.
.B
/B /B
.
.B
/? /?
.
.B
(If + / )
.
.B
.
.B
(If + = / )
B8 8B8"
log+ B
.
.B
log+ ?
.
.B
ln B
.
.B
ln ?
.
.B
sin B cos B
.
.B
sin ? cos ?
.
.B
cos B sin B
.
.B
cos ? sin ?
.
.B
tan B sec# B
.
.B
tan ? sec# ?
.
.B
cot B csc# B
.
.B
cot ? csc# ?
.
.B
sec B sec B tan B
.
.B
sec ? sec ? tan ?
.
.B
csc B csc B cot B
.
.B
csc ? csc ? cot ?
.
.B
sin" B
.
.B
sin" ?
.
.B
arcsin B
.
.B
arcsin ?
.
.B
tan" B
.
.B
tan" ?
.
.B
1
(ln +) B
1
B
1
"B#
arctan B =
1
"B#
.
.B
.?
.B
.?
.B
.?
.B
.?
1
(ln +) ? .B
1 .?
? .B
.?
.B
.?
.B
.?
.B
1
"?#
arctan ? =
.?
.B
.?
.B
.?
.B
.?
1
"?# .B
.?
.B