際際滷

際際滷Share a Scribd company logo
Block 2
The Discriminant
What is to be learned?
 What the discriminant is
 How we use the discriminant to find out
how many solutions there are (if any)
Quadratic Formula
x = -b +
- b2  4ac
2a
How many solutions?
1. x2 + 6x + 9 = 0
2. x2 + 8x + 9 = 0
3. x2 + 4x + 9 = 0
1
2
0
The Big Nasty Formula
2a
x = -b +
- b2  4ac
How many solutions?
1. x2 + 6x + 9 = 0
2. x2 + 8x + 9 = 0
3. x2 + 4x + 9 = 0
1
2
0
The Discriminant
tells you how many
solutions you have
zero
positive
negative
The Discriminant
b2  4ac
If b2  4ac is positive
If b2  4ac is zero
If b2  4ac is negative  0 solutions
 2 solutions
 1 solution
The Discriminant
b2  4ac
If b2  4ac is positive
If b2  4ac is zero
If b2  4ac is negative  0 solutions
Or
 2 solutions
 1 solution
The Discriminant
b2  4ac
If b2  4ac > 0
If b2  4ac = 0
If b2  4ac < 0
 2 solutions
 1 equal roots
 Imaginary roots
Or
Nature of Roots
x2+ 5x  11 = 0
c.f. ax2 + bx + c = 0
a = 1, b = 5, c = -11
Using Discriminant
b2 4ac
= 52  4(1)(-11)
= 25 + 44
= 69
2 real roots
The Discriminant
The b2  4ac part of the BNF
If b2  4ac > 0  2 solutions ( 2 real roots)
If b2  4ac = 0  1 solution(1 real root)
(equal roots)
If b2  4ac < 0  0 solutions (no real roots)
Nature of Roots
x2+ 6x + 10 = 0
c.f. ax2 + bx + c = 0
a = 1, b = 6, c = 10
Using Discriminant
b2 4ac
= 62  4(1)(10)
= - 4
no real roots
Must be written
like this
Key Question
Find the nature of the roots of this equation
3m(m + 2) + 4m = 7
3m2 + 6m + 4m = 7
3m2 + 10m  7 = 0
c.f. am2 + bm + c = 0
a = 3, b = 10, c = -7
Using Discriminant
b2 4ac
= 102  4(3)(-7)
= 100 + 84
= 184
Using The Discriminant
If equal Roots find value of t.
tx2+ 8x + 4 = 0
c.f. ax2 + bx + c = 0
a = t, b = 8,
For equal roots
64  16t = 0
64 = 16t
t = 4
b2  4ac = 0
82  4t(4) = 0
c = 4
State Rule
Get Values
Sub Values
Solve
64  8g = 0
64 = 8g
g = 8
c.f. ax2 + bx + c = 0
a = 2, b = -8, c = g
For equal roots
b2  4ac = 0
(-8)2  4(2)g = 0
Using The Discriminant
If equal Roots find value of g.
2x2 8x + g = 0
State Rule
Get Values
Sub Values
Solve
Key Question
If equal Roots find value of r.
rx2 18x + 27 = 0
c.f. ax2 + bx + c = 0
a = r, b = -18,c = 27
For equal roots
(-18)2  4r(27) = 0
324  108r = 0
324 = 108r
r = 3
b2  4ac = 0
Equal roots
2x2 + (m+1)x + 8 = 0
c.f. ax2 + bx + c = 0
a = 2, b = m+1, c = 8
For equal roots
m2 + 2m  63 = 0
(m + 9)(m  7) = 0
m = -9 or m = 7
b2  4ac = 0
(m+1)2  4(2)(8) = 0
m2 + 2m + 1  64 = 0
(m+1)(m+1)
=m2 +2m+1
Quadratic Equation
No real roots?
2x2 8x + g = 0
c.f. ax2 + bx + c = 0
a = 2, b = -8, c = g
For no real roots b2  4ac < 0
(-8)2  4(2)g < 0
64  8g < 0
Inequation
Solving Equations
- Reminder
4x = 12 4x > 12
x = 3 x > 3 (Solution)
4x  2 = 10
Solving Inequations
4x  2 >
= 10
Main difference is the sign in the middle
One other bigdifference
10 > 6
Add 4 to each side
10 + 4 > 6 + 4
14 > 10
True
10 > 6
Multiply each side by 3
10 X 3 > 6 X 3
30 > 18
True
10 > 6
Divide each side by 2
10 歎 2 > 6 歎 2
5 > 3
True
10 > 6
Divide each side by -2
10歎(-2) > 6歎(-2)
-5 -3
False!!!!!!!
>
If dividing/multiplying by a negative
you must turn sign round
Sorted!
Back to.
64  8g < 0
 8g < -64
g > 8
No real roots if g > 8

More Related Content

discriminants.pptx

  • 2. What is to be learned? What the discriminant is How we use the discriminant to find out how many solutions there are (if any)
  • 3. Quadratic Formula x = -b + - b2 4ac 2a How many solutions? 1. x2 + 6x + 9 = 0 2. x2 + 8x + 9 = 0 3. x2 + 4x + 9 = 0 1 2 0
  • 4. The Big Nasty Formula 2a x = -b + - b2 4ac How many solutions? 1. x2 + 6x + 9 = 0 2. x2 + 8x + 9 = 0 3. x2 + 4x + 9 = 0 1 2 0 The Discriminant tells you how many solutions you have zero positive negative
  • 5. The Discriminant b2 4ac If b2 4ac is positive If b2 4ac is zero If b2 4ac is negative 0 solutions 2 solutions 1 solution
  • 6. The Discriminant b2 4ac If b2 4ac is positive If b2 4ac is zero If b2 4ac is negative 0 solutions Or 2 solutions 1 solution
  • 7. The Discriminant b2 4ac If b2 4ac > 0 If b2 4ac = 0 If b2 4ac < 0 2 solutions 1 equal roots Imaginary roots Or
  • 8. Nature of Roots x2+ 5x 11 = 0 c.f. ax2 + bx + c = 0 a = 1, b = 5, c = -11 Using Discriminant b2 4ac = 52 4(1)(-11) = 25 + 44 = 69 2 real roots
  • 9. The Discriminant The b2 4ac part of the BNF If b2 4ac > 0 2 solutions ( 2 real roots) If b2 4ac = 0 1 solution(1 real root) (equal roots) If b2 4ac < 0 0 solutions (no real roots)
  • 10. Nature of Roots x2+ 6x + 10 = 0 c.f. ax2 + bx + c = 0 a = 1, b = 6, c = 10 Using Discriminant b2 4ac = 62 4(1)(10) = - 4 no real roots Must be written like this
  • 11. Key Question Find the nature of the roots of this equation 3m(m + 2) + 4m = 7 3m2 + 6m + 4m = 7 3m2 + 10m 7 = 0 c.f. am2 + bm + c = 0 a = 3, b = 10, c = -7 Using Discriminant b2 4ac = 102 4(3)(-7) = 100 + 84 = 184
  • 12. Using The Discriminant If equal Roots find value of t. tx2+ 8x + 4 = 0 c.f. ax2 + bx + c = 0 a = t, b = 8, For equal roots 64 16t = 0 64 = 16t t = 4 b2 4ac = 0 82 4t(4) = 0 c = 4 State Rule Get Values Sub Values Solve
  • 13. 64 8g = 0 64 = 8g g = 8 c.f. ax2 + bx + c = 0 a = 2, b = -8, c = g For equal roots b2 4ac = 0 (-8)2 4(2)g = 0 Using The Discriminant If equal Roots find value of g. 2x2 8x + g = 0 State Rule Get Values Sub Values Solve
  • 14. Key Question If equal Roots find value of r. rx2 18x + 27 = 0 c.f. ax2 + bx + c = 0 a = r, b = -18,c = 27 For equal roots (-18)2 4r(27) = 0 324 108r = 0 324 = 108r r = 3 b2 4ac = 0
  • 15. Equal roots 2x2 + (m+1)x + 8 = 0 c.f. ax2 + bx + c = 0 a = 2, b = m+1, c = 8 For equal roots m2 + 2m 63 = 0 (m + 9)(m 7) = 0 m = -9 or m = 7 b2 4ac = 0 (m+1)2 4(2)(8) = 0 m2 + 2m + 1 64 = 0 (m+1)(m+1) =m2 +2m+1 Quadratic Equation
  • 16. No real roots? 2x2 8x + g = 0 c.f. ax2 + bx + c = 0 a = 2, b = -8, c = g For no real roots b2 4ac < 0 (-8)2 4(2)g < 0 64 8g < 0 Inequation
  • 17. Solving Equations - Reminder 4x = 12 4x > 12 x = 3 x > 3 (Solution) 4x 2 = 10 Solving Inequations 4x 2 > = 10 Main difference is the sign in the middle One other bigdifference
  • 18. 10 > 6 Add 4 to each side 10 + 4 > 6 + 4 14 > 10 True
  • 19. 10 > 6 Multiply each side by 3 10 X 3 > 6 X 3 30 > 18 True
  • 20. 10 > 6 Divide each side by 2 10 歎 2 > 6 歎 2 5 > 3 True
  • 21. 10 > 6 Divide each side by -2 10歎(-2) > 6歎(-2) -5 -3 False!!!!!!! > If dividing/multiplying by a negative you must turn sign round Sorted!
  • 22. Back to. 64 8g < 0 8g < -64 g > 8 No real roots if g > 8