This document summarizes a method for deriving urban structure types from remote sensing data. It involves segmenting and classifying very high resolution imagery and digital surface models to extract buildings and characterize urban landscapes. A multi-step workflow segments the images, optimizes the segments, classifies buildings and land cover, then aggregates the results into homogeneous urban structure types at the block level for applications like urban planning, risk assessment, and analyzing local heating potentials.
1 of 20
More Related Content
E Cognition User Summit2009 M Wurm Dlr Structure Types C
1. Mapping urban diversity Derivation of urban structure types by means of multisensoral remote sensing data Michael Wurm German Aerospace Center (DLR) German Remote Sensing Data Center (DFD) University of W¨¹rzburg, Department for Remote Sensing
4. Characterisation of urban landscape for ¡ Physical furnishing of the urban area Mapping/Monitoring the urban landscape Comparability Urban planning Added-value analyses Risk- and vulnerability assessment Assessment of local heating potentials Socioeconomic data Discrimination of homogenous areas on block level ? Urban structure types
16. Schrebergarten Einzel-/Doppelhausbebauung Freistehende Geschossbauten Reihenhaus Zeilenbebauung Offene Blockrandbebauung Geschlossene Blockrandbebauung Offene Blockbebauung Geschlossene Blockbebauung Geschossbaukomplexe Hallenbebauung Punkt-/Scheibenhochhaus Mischbebauung Shape parameters for classification Number of courtyards Sealed areas Vegetated areas Building elevation Building levels Compactness Volume Area Lenght/Width Length of main line Urban Structure Types