際際滷

際際滷Share a Scribd company logo
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 1
E-Commerce and Graph-driven Applications:
Experiences and Optimizations while
moving to Linked Data
Andreas Both, Head of Research and Development
UNISTER GmbH, Germany
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 2
Unister Group
e-commerce company
founded 2002
major B2C web portals in Germany (and Europe)
verticals: travel, 鍖ights, travel packages, retail, . . .
integrated business model
10 million unique users per month (Germany, AGOF)
increased number of employees
2003: 1
2015: 1600
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 2
Unister Group
e-commerce company
founded 2002
major B2C web portals in Germany (and Europe)
verticals: travel, 鍖ights, travel packages, retail, . . .
integrated business model
10 million unique users per month (Germany, AGOF)
increased number of employees
2003: 1
2015: 1600
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 3
Use Case
Agenda for e-commerce companies:
take advantage of linked data
unchain datastores from schema
Requirements:
fast
robust
scalable
 Users: I want it all. I want it now.
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 3
Use Case
Agenda for e-commerce companies:
take advantage of linked data
unchain datastores from schema
Requirements:
fast
robust
scalable
 Users: I want it all. I want it now.
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 3
Use Case
Agenda for e-commerce companies:
take advantage of linked data
unchain datastores from schema
Requirements:
fast
robust
scalable
 Users: I want it all. I want it now.
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 4
Typical Data Structures and Queries
hierarchical (directed) region graph
hotels and regions might have many features
typical queries: select several features of hotels
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 5
Example Query
PREFIX uo : <http :// ontology . u n i s t e r . de/ ontology#>
PREFIX uor : <http :// ontology . u n i s t e r . de/ r e s o u r c e/>
PREFIX u o r f : <http :// ontology . u n i s t e r . de/ h o t e l / f a c i l i t y />
PREFIX uos : <http :// ontology . u n i s t e r . de/ skos/>
SELECT d i s t i n c t ? s {
? s a uo : Hotel ;
uo : hasFeature u o r f :56 ,
u o r f :18 ,
u o r f :21 ,
u o r f :210 ,
u o r f : 5 ,
u o r f :211 ,
u o r f :34 ,
u o r f : 1 7 ;
uo : l o c a t e d I n uor : Europe ;
uo : s u i t a b l e F o r uos : Family
} LIMIT 10;
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 6
Experiences: standard search process
A search for attributes
...1 very selective
...2 less selective
B pick a region
C sort the results
D limit the selection
Setting:
Dataset: 71600 Hotels, resources: 278,277, literal: 3,022,583
Virtuoso: version 7.1 (fast track1
), 824 MB, bu鍖er size: 70,000
Experiments: 20 runs, charts show median
1
https://github.com/v7fasttrack/virtuoso-opensource/tree/feature/emergent
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 6
Experiences: standard search process
A search for attributes
...1 very selective
...2 less selective
B pick a region
C sort the results
D limit the selection
Setting:
Dataset: 71600 Hotels, resources: 278,277, literal: 3,022,583
Virtuoso: version 7.1 (fast track1
), 824 MB, bu鍖er size: 70,000
Experiments: 20 runs, charts show median
1
https://github.com/v7fasttrack/virtuoso-opensource/tree/feature/emergent
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 6
Experiences: standard search process
A search for attributes
...1 very selective
...2 less selective
B pick a region
C sort the results
D limit the selection
Setting:
Dataset: 71600 Hotels, resources: 278,277, literal: 3,022,583
Virtuoso: version 7.1 (fast track1
), 824 MB, bu鍖er size: 70,000
Experiments: 20 runs, charts show median
1
https://github.com/v7fasttrack/virtuoso-opensource/tree/feature/emergent
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 7
Requirements for Industrial Applicability (in e-commerce)
requirements for replacing
traditional databases:
fast: short response time
search query re鍖nement
 shorter response time
robust: similar answer times
easy to scale up
system resource e鍖cient
 requirements not ful鍖lled
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 7
Requirements for Industrial Applicability (in e-commerce)
requirements for replacing
traditional databases:
fast: short response time
search query re鍖nement
 shorter response time
robust: similar answer times
easy to scale up
system resource e鍖cient
 requirements not ful鍖lled
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 8
Example Query
PREFIX uo : <http :// ontology . u n i s t e r . de/ ontology#>
PREFIX uor : <http :// ontology . u n i s t e r . de/ r e s o u r c e/>
PREFIX uorf : <http :// ontology . u n i s t e r . de/ h o t e l / f a c i l i t y />
PREFIX uos : <http :// ontology . u n i s t e r . de/ skos/>
SELECT d i s t i n c t ? s {
? s a uo : Hotel ;
uo : hasFeature uorf :56 ,
uorf :18 ,
uorf :21 ,
uorf :210 ,
uorf : 5 ,
uorf :211 ,
uorf :34 ,
uorf : 1 7 ;
uo : l o c a t e d I n uor : Europe ;
uo : s u i t a b l e F o r uos : Family
} LIMIT 10;
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 9
Data Preparation
hotel entity p1 p2 p3 . . . pn
hotel1 0 0 1 . . . 0
hotel2 1 0 1 . . . 1
hotel3 1 1 1 . . . 0
hotel4 1 0 1 . . . 1
...
...
...
...
...
...
hotelm 0 0 1 . . . 0
BitSet representation of (hotel) properties:
p = 0010...0
Advantages:
no index
very small
operations in-memory
easy update
easy insert
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 9
Data Preparation
hotel entity p1 p2 p3 . . . pn
hotel1 0 0 1 . . . 0
hotel2 1 0 1 . . . 1
hotel3 1 1 1 . . . 0
hotel4 1 0 1 . . . 1
...
...
...
...
...
...
hotelm 0 0 1 . . . 0
BitSet representation of (hotel) properties:
p = 0010...0
Advantages:
no index
very small
operations in-memory
easy update
easy insert
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 9
Data Preparation
hotel entity p1 p2 p3 . . . pn
hotel1 0 0 1 . . . 0
hotel2 1 0 1 . . . 1
hotel3 1 1 1 . . . 0
hotel4 1 0 1 . . . 1
...
...
...
...
...
...
hotelm 0 0 1 . . . 0
BitSet representation of (hotel) properties:
p = 0010...0
Advantages:
no index
very small
operations in-memory
easy update
easy insert
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 10
Data Preparation
BitSet Setting, Virtuoso adaptions:
16507 stored properties  63,109,198 B RAM used
Virtuoso: 824 MB  706 MB
Virtuoso set-up update: bu鍖er size=60000
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 11
Implemented Process: Virtuoso plugin
(with kind help of the Openlink team, GeoKnow Project2)
1 interpret bif:contains (workaround!)
2 request bitsets from memcache via JNI (workaround!)
3 compute hotels using bit operations on addressed bitsets
4 map hotel IDs to Virtuoso literal IDs (workaround!)
query IDs from Virtuoso via literal selection
requires special predicate for each hotel resource
5 return cursor on result set
2
This work has been supported by grants from the
European Unions 7th Framework Programme provided
for the project GeoKnow (GA no. 318159)), c.f.,
http://geoknow.eu
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 11
Implemented Process: Virtuoso plugin
(with kind help of the Openlink team, GeoKnow Project2)
1 interpret bif:contains (workaround!)
2 request bitsets from memcache via JNI (workaround!)
3 compute hotels using bit operations on addressed bitsets
4 map hotel IDs to Virtuoso literal IDs (workaround!)
query IDs from Virtuoso via literal selection
requires special predicate for each hotel resource
5 return cursor on result set
2
This work has been supported by grants from the
European Unions 7th Framework Programme provided
for the project GeoKnow (GA no. 318159)), c.f.,
http://geoknow.eu
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 11
Implemented Process: Virtuoso plugin
(with kind help of the Openlink team, GeoKnow Project2)
1 interpret bif:contains (workaround!)
2 request bitsets from memcache via JNI (workaround!)
3 compute hotels using bit operations on addressed bitsets
4 map hotel IDs to Virtuoso literal IDs (workaround!)
query IDs from Virtuoso via literal selection
requires special predicate for each hotel resource
5 return cursor on result set
2
This work has been supported by grants from the
European Unions 7th Framework Programme provided
for the project GeoKnow (GA no. 318159)), c.f.,
http://geoknow.eu
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 12
Preliminary Results of A: properties in BitSets
Observations:
more complex 
less response time
stable response
times
warmup required
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 13
Preliminary Results of B: non-selective property in Virtuoso
Observations:
less selective
feature answered
within Virtuoso
has largest impact
on computation
time
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 14
Preliminary Results of C: order by
Observations:
sorting is not
done in BitSet,
but might be
possible to
implement in the
future
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 15
Preliminary Results D: limit 10
Observations:
limit is not done
in BitSet, but
might be possible
to implement in
the future
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 16
Discussion
Summary:
proven good performance
query time is robust
very resource e鍖cient
no schema required
 if a star pattern is
recognizable, then use bitset
optimization
ToDos (not production ready):
overcome workarounds
tighten the integration
generalize interface
extend to ElasticSearch
 Virtuoso with full-text index
cluster)
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 16
Discussion
Summary:
proven good performance
query time is robust
very resource e鍖cient
no schema required
 if a star pattern is
recognizable, then use bitset
optimization
ToDos (not production ready):
overcome workarounds
tighten the integration
generalize interface
extend to ElasticSearch
 Virtuoso with full-text index
cluster)
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 16
Discussion
Summary:
proven good performance
query time is robust
very resource e鍖cient
no schema required
 if a star pattern is
recognizable, then use bitset
optimization
ToDos (not production ready):
overcome workarounds
tighten the integration
generalize interface
extend to ElasticSearch
 Virtuoso with full-text index
cluster)
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 16
Discussion
Summary:
proven good performance
query time is robust
very resource e鍖cient
no schema required
 if a star pattern is
recognizable, then use bitset
optimization
ToDos (not production ready):
overcome workarounds
tighten the integration
generalize interface
extend to ElasticSearch
 Virtuoso with full-text index
cluster)
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 16
Discussion
Summary:
proven good performance
query time is robust
very resource e鍖cient
no schema required
 if a star pattern is
recognizable, then use bitset
optimization
ToDos (not production ready):
overcome workarounds
tighten the integration
generalize interface
extend to ElasticSearch
 Virtuoso with full-text index
cluster)
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 17
Take Away Messages
e-commerce use case requires short and robust request times
BitSet-driven extension has proven its value
 basic requirements of e-commerce scenario ful鍖lled
 still 鍖exible (schemaless), but performant
taking advantage of external data structures is possible (in
Virtuoso)
Dr. Andreas Both
Head of Research
and Development
Unister GmbH,
Leipzig, Germany
andreas.both@unister.de
+49 341 65050 24496
http://www.unister.de
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 17
Take Away Messages
e-commerce use case requires short and robust request times
BitSet-driven extension has proven its value
 basic requirements of e-commerce scenario ful鍖lled
 still 鍖exible (schemaless), but performant
taking advantage of external data structures is possible (in
Virtuoso)
Dr. Andreas Both
Head of Research
and Development
Unister GmbH,
Leipzig, Germany
andreas.both@unister.de
+49 341 65050 24496
http://www.unister.de
Dr. Andreas Both, Head of R & D, Unister  LDBC, Barcelona, 2015-03-20 際際滷 17
Take Away Messages
e-commerce use case requires short and robust request times
BitSet-driven extension has proven its value
 basic requirements of e-commerce scenario ful鍖lled
 still 鍖exible (schemaless), but performant
taking advantage of external data structures is possible (in
Virtuoso)
Dr. Andreas Both
Head of Research
and Development
Unister GmbH,
Leipzig, Germany
andreas.both@unister.de
+49 341 65050 24496
http://www.unister.de

More Related Content

E-Commerce and Graph-driven Applications: Experiences and Optimizations while moving to Linked Data

  • 1. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 1 E-Commerce and Graph-driven Applications: Experiences and Optimizations while moving to Linked Data Andreas Both, Head of Research and Development UNISTER GmbH, Germany
  • 2. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 2 Unister Group e-commerce company founded 2002 major B2C web portals in Germany (and Europe) verticals: travel, 鍖ights, travel packages, retail, . . . integrated business model 10 million unique users per month (Germany, AGOF) increased number of employees 2003: 1 2015: 1600
  • 3. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 2 Unister Group e-commerce company founded 2002 major B2C web portals in Germany (and Europe) verticals: travel, 鍖ights, travel packages, retail, . . . integrated business model 10 million unique users per month (Germany, AGOF) increased number of employees 2003: 1 2015: 1600
  • 4. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 3 Use Case Agenda for e-commerce companies: take advantage of linked data unchain datastores from schema Requirements: fast robust scalable Users: I want it all. I want it now.
  • 5. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 3 Use Case Agenda for e-commerce companies: take advantage of linked data unchain datastores from schema Requirements: fast robust scalable Users: I want it all. I want it now.
  • 6. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 3 Use Case Agenda for e-commerce companies: take advantage of linked data unchain datastores from schema Requirements: fast robust scalable Users: I want it all. I want it now.
  • 7. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 4 Typical Data Structures and Queries hierarchical (directed) region graph hotels and regions might have many features typical queries: select several features of hotels
  • 8. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 5 Example Query PREFIX uo : <http :// ontology . u n i s t e r . de/ ontology#> PREFIX uor : <http :// ontology . u n i s t e r . de/ r e s o u r c e/> PREFIX u o r f : <http :// ontology . u n i s t e r . de/ h o t e l / f a c i l i t y /> PREFIX uos : <http :// ontology . u n i s t e r . de/ skos/> SELECT d i s t i n c t ? s { ? s a uo : Hotel ; uo : hasFeature u o r f :56 , u o r f :18 , u o r f :21 , u o r f :210 , u o r f : 5 , u o r f :211 , u o r f :34 , u o r f : 1 7 ; uo : l o c a t e d I n uor : Europe ; uo : s u i t a b l e F o r uos : Family } LIMIT 10;
  • 9. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 6 Experiences: standard search process A search for attributes ...1 very selective ...2 less selective B pick a region C sort the results D limit the selection Setting: Dataset: 71600 Hotels, resources: 278,277, literal: 3,022,583 Virtuoso: version 7.1 (fast track1 ), 824 MB, bu鍖er size: 70,000 Experiments: 20 runs, charts show median 1 https://github.com/v7fasttrack/virtuoso-opensource/tree/feature/emergent
  • 10. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 6 Experiences: standard search process A search for attributes ...1 very selective ...2 less selective B pick a region C sort the results D limit the selection Setting: Dataset: 71600 Hotels, resources: 278,277, literal: 3,022,583 Virtuoso: version 7.1 (fast track1 ), 824 MB, bu鍖er size: 70,000 Experiments: 20 runs, charts show median 1 https://github.com/v7fasttrack/virtuoso-opensource/tree/feature/emergent
  • 11. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 6 Experiences: standard search process A search for attributes ...1 very selective ...2 less selective B pick a region C sort the results D limit the selection Setting: Dataset: 71600 Hotels, resources: 278,277, literal: 3,022,583 Virtuoso: version 7.1 (fast track1 ), 824 MB, bu鍖er size: 70,000 Experiments: 20 runs, charts show median 1 https://github.com/v7fasttrack/virtuoso-opensource/tree/feature/emergent
  • 12. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 7 Requirements for Industrial Applicability (in e-commerce) requirements for replacing traditional databases: fast: short response time search query re鍖nement shorter response time robust: similar answer times easy to scale up system resource e鍖cient requirements not ful鍖lled
  • 13. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 7 Requirements for Industrial Applicability (in e-commerce) requirements for replacing traditional databases: fast: short response time search query re鍖nement shorter response time robust: similar answer times easy to scale up system resource e鍖cient requirements not ful鍖lled
  • 14. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 8 Example Query PREFIX uo : <http :// ontology . u n i s t e r . de/ ontology#> PREFIX uor : <http :// ontology . u n i s t e r . de/ r e s o u r c e/> PREFIX uorf : <http :// ontology . u n i s t e r . de/ h o t e l / f a c i l i t y /> PREFIX uos : <http :// ontology . u n i s t e r . de/ skos/> SELECT d i s t i n c t ? s { ? s a uo : Hotel ; uo : hasFeature uorf :56 , uorf :18 , uorf :21 , uorf :210 , uorf : 5 , uorf :211 , uorf :34 , uorf : 1 7 ; uo : l o c a t e d I n uor : Europe ; uo : s u i t a b l e F o r uos : Family } LIMIT 10;
  • 15. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 9 Data Preparation hotel entity p1 p2 p3 . . . pn hotel1 0 0 1 . . . 0 hotel2 1 0 1 . . . 1 hotel3 1 1 1 . . . 0 hotel4 1 0 1 . . . 1 ... ... ... ... ... ... hotelm 0 0 1 . . . 0 BitSet representation of (hotel) properties: p = 0010...0 Advantages: no index very small operations in-memory easy update easy insert
  • 16. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 9 Data Preparation hotel entity p1 p2 p3 . . . pn hotel1 0 0 1 . . . 0 hotel2 1 0 1 . . . 1 hotel3 1 1 1 . . . 0 hotel4 1 0 1 . . . 1 ... ... ... ... ... ... hotelm 0 0 1 . . . 0 BitSet representation of (hotel) properties: p = 0010...0 Advantages: no index very small operations in-memory easy update easy insert
  • 17. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 9 Data Preparation hotel entity p1 p2 p3 . . . pn hotel1 0 0 1 . . . 0 hotel2 1 0 1 . . . 1 hotel3 1 1 1 . . . 0 hotel4 1 0 1 . . . 1 ... ... ... ... ... ... hotelm 0 0 1 . . . 0 BitSet representation of (hotel) properties: p = 0010...0 Advantages: no index very small operations in-memory easy update easy insert
  • 18. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 10 Data Preparation BitSet Setting, Virtuoso adaptions: 16507 stored properties 63,109,198 B RAM used Virtuoso: 824 MB 706 MB Virtuoso set-up update: bu鍖er size=60000
  • 19. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 11 Implemented Process: Virtuoso plugin (with kind help of the Openlink team, GeoKnow Project2) 1 interpret bif:contains (workaround!) 2 request bitsets from memcache via JNI (workaround!) 3 compute hotels using bit operations on addressed bitsets 4 map hotel IDs to Virtuoso literal IDs (workaround!) query IDs from Virtuoso via literal selection requires special predicate for each hotel resource 5 return cursor on result set 2 This work has been supported by grants from the European Unions 7th Framework Programme provided for the project GeoKnow (GA no. 318159)), c.f., http://geoknow.eu
  • 20. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 11 Implemented Process: Virtuoso plugin (with kind help of the Openlink team, GeoKnow Project2) 1 interpret bif:contains (workaround!) 2 request bitsets from memcache via JNI (workaround!) 3 compute hotels using bit operations on addressed bitsets 4 map hotel IDs to Virtuoso literal IDs (workaround!) query IDs from Virtuoso via literal selection requires special predicate for each hotel resource 5 return cursor on result set 2 This work has been supported by grants from the European Unions 7th Framework Programme provided for the project GeoKnow (GA no. 318159)), c.f., http://geoknow.eu
  • 21. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 11 Implemented Process: Virtuoso plugin (with kind help of the Openlink team, GeoKnow Project2) 1 interpret bif:contains (workaround!) 2 request bitsets from memcache via JNI (workaround!) 3 compute hotels using bit operations on addressed bitsets 4 map hotel IDs to Virtuoso literal IDs (workaround!) query IDs from Virtuoso via literal selection requires special predicate for each hotel resource 5 return cursor on result set 2 This work has been supported by grants from the European Unions 7th Framework Programme provided for the project GeoKnow (GA no. 318159)), c.f., http://geoknow.eu
  • 22. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 12 Preliminary Results of A: properties in BitSets Observations: more complex less response time stable response times warmup required
  • 23. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 13 Preliminary Results of B: non-selective property in Virtuoso Observations: less selective feature answered within Virtuoso has largest impact on computation time
  • 24. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 14 Preliminary Results of C: order by Observations: sorting is not done in BitSet, but might be possible to implement in the future
  • 25. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 15 Preliminary Results D: limit 10 Observations: limit is not done in BitSet, but might be possible to implement in the future
  • 26. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 16 Discussion Summary: proven good performance query time is robust very resource e鍖cient no schema required if a star pattern is recognizable, then use bitset optimization ToDos (not production ready): overcome workarounds tighten the integration generalize interface extend to ElasticSearch Virtuoso with full-text index cluster)
  • 27. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 16 Discussion Summary: proven good performance query time is robust very resource e鍖cient no schema required if a star pattern is recognizable, then use bitset optimization ToDos (not production ready): overcome workarounds tighten the integration generalize interface extend to ElasticSearch Virtuoso with full-text index cluster)
  • 28. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 16 Discussion Summary: proven good performance query time is robust very resource e鍖cient no schema required if a star pattern is recognizable, then use bitset optimization ToDos (not production ready): overcome workarounds tighten the integration generalize interface extend to ElasticSearch Virtuoso with full-text index cluster)
  • 29. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 16 Discussion Summary: proven good performance query time is robust very resource e鍖cient no schema required if a star pattern is recognizable, then use bitset optimization ToDos (not production ready): overcome workarounds tighten the integration generalize interface extend to ElasticSearch Virtuoso with full-text index cluster)
  • 30. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 16 Discussion Summary: proven good performance query time is robust very resource e鍖cient no schema required if a star pattern is recognizable, then use bitset optimization ToDos (not production ready): overcome workarounds tighten the integration generalize interface extend to ElasticSearch Virtuoso with full-text index cluster)
  • 31. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 17 Take Away Messages e-commerce use case requires short and robust request times BitSet-driven extension has proven its value basic requirements of e-commerce scenario ful鍖lled still 鍖exible (schemaless), but performant taking advantage of external data structures is possible (in Virtuoso) Dr. Andreas Both Head of Research and Development Unister GmbH, Leipzig, Germany andreas.both@unister.de +49 341 65050 24496 http://www.unister.de
  • 32. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 17 Take Away Messages e-commerce use case requires short and robust request times BitSet-driven extension has proven its value basic requirements of e-commerce scenario ful鍖lled still 鍖exible (schemaless), but performant taking advantage of external data structures is possible (in Virtuoso) Dr. Andreas Both Head of Research and Development Unister GmbH, Leipzig, Germany andreas.both@unister.de +49 341 65050 24496 http://www.unister.de
  • 33. Dr. Andreas Both, Head of R & D, Unister LDBC, Barcelona, 2015-03-20 際際滷 17 Take Away Messages e-commerce use case requires short and robust request times BitSet-driven extension has proven its value basic requirements of e-commerce scenario ful鍖lled still 鍖exible (schemaless), but performant taking advantage of external data structures is possible (in Virtuoso) Dr. Andreas Both Head of Research and Development Unister GmbH, Leipzig, Germany andreas.both@unister.de +49 341 65050 24496 http://www.unister.de