1. Definitions
FluxThe rate of flow through an area or volume. It can
also be viewed as the product of an area and the vector
field across the area
Electric FluxThe rate of flow of an electric field through
an area or volumerepresented by the number of E field
lines penetrating a surface
2. Charge and Electric Flux
Previously, we answered the question how do we find
E-field at any point in space if we know charge distribution?
Now we will answer the opposite question if we know E-field
distribution in space, what can we say about charge distribution?
3. Electric flux
Electric flux is associated with the flow of electric field through a surface
For an enclosed charge, there is a connection
between the amount of charge
and electric field flux.
2
2
1
~
~
E
r
S r
E S const
5. Calculating Electric Flux
The flux for an electric field is
For an arbitrary surface and nonuniform E field
Where the area vector is a vector with magnitude of the
area A and direction normal to the plane of A
A
E
駕
E 揃 d
r
A
嘆
6. Flux of a Uniform Electric Field
cos
E E A EA
A A n
n
- unit vector in the direction of normal to the surface
Flux of a Non-Uniform Electric Field
E
S
E d A
緒
E non-uniform and
A- not flat
7. Few examples on calculating the electric flux
3
2 10 [ / ]
E N C
Find electric flux
8. Definitions
SymmetryThe balanced structure of an object, the
halves of which are alike
Closed surfaceA surface that divides space into an inside
and outside region, so one cant move from one region to
another without crossing the surface
Gaussian surfaceA hypothetical closed surface that has
the same symmetry as the problem we are working on
note this is not a real surface it is just an mathematical one
9. Gauss Law
揃 GaussLaw depends on the enclosed charge only
1. If there is a positive net flux there is a net positive charge
enclosed
2. If there is a negative net flux there is a net negative charge
enclosed
3. If there is a zero net flux there is no net charge enclosed
Gauss Law works in cases of symmetry
o
enc
q
A
d
E
10. Types of Symmetry
Cylindrical symmetryexample a can
Spherical symmetryexample a ball
Rectangular symmetryexample a boxrarely used
14. Steps to Applying Gauss Law
To find the E field produced by a charge distribution at a point of
distance r from the center
1. Decide which type of symmetry best complements the
problem
2. Draw a Gaussian surface (mathematical not real)
reflecting the symmetry you chose around the charge
distribution at a distance of r from the center
3. Using Gausss law obtain the magnitude of E
17. Applications of the Gausss Law
If no charge is enclosed within Gaussian surface flux is zero!
Electric flux is proportional to the algebraic number of lines leaving
the surface, outgoing lines have positive sign, incoming - negative
Remember electric field lines must start and must end on charges!
18. Examples of certain field configurations
Remember, Gausss law is equivalent to Coulombs law
However, you can employ it for certain symmetries to solve the reverse problem
find charge configuration from known E-field distribution.
Field within the conductor zero
(free charges screen the external field)
Any excess charge resides on the
surface
0
S
E d A
20. Field of a thin, uniformly charged conducting wire
Field outside the wire can only point
radially outward, and, therefore, may
only depend on the distance from the wire
0
Q
E d A
0
2
E
r
l- linear density of charge
21. Field of the uniformly charged sphere
r
E
0
3
Uniform charge within a sphere of radius r
3
' r
q Q
a
Q - total charge
Q
V
- volume density of charge
Field of the infinitely large conducting plate
s- uniform surface charge density
Q
A
0
2
E
22. Charged Isolated Conductors
In a charged isolated conductor all the charge moves to the
surface
The E field inside a conductor must be 0 otherwise a
current would be set up
The charges do not necessarily distribute themselves
uniformly, they distribute themselves so the net force on
each other is 0.
This means the surface charge density varies over a
nonspherical conductor
23. Charged Isolated Conductors cont
On a conducting surface
If there were a cavity in the isolated conductor, no charges
would be on the surface of the cavity, they would stay on
the surface of the conductor
o
E
24. Charge on solid conductor resides on surface.
Charge in cavity makes a equal but opposite charge reside on
inner surface of conductor.
25. Properties of a Conductor in Electrostatic Equilibrium
1. The E field is zero everywhere inside the conductor
2. If an isolated conductor carries a charge, the charge resides on its
surface
3. The electric field just outside a charged conductor is
perpendicular to the surface and has the magnitude given above
4. On an irregularly shaped conductor, the surface charge density is
greatest at locations where the radius of curvature of the surface
is smallest