Equilibrium Conditions for Tethered Nanosatellite Constellations
1. State of the art Mathematical model Conclusion
Equilibrium Conditions for Tethered
Nanosatellite Constellations
Denilson Paulo Souza dos Santos
denilson.santos@unesp.br
Engenharia Aeron叩utica
17 de junho de 2024
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 1 / 14
2. State of the art Mathematical model Conclusion
Sum叩rio
1 State of the art
Introduction
2 Mathematical model
3 Conclusion
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 2 / 14
3. State of the art Mathematical model Conclusion
State of the art
The idea of connecting Earth to Heaven already debated previously
and been described in Christian mythology. The Tower of Babel was
supposed to be the way to ascend to Heaven, coming once again
the story, the patriarch Jacob who described a vision where angels
descended and ascended from heaven to Earth via a stairs, are the
first descriptions of supposed space elevators.
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 3 / 14
4. State of the art Mathematical model Conclusion
Introduction
Figura: Artist Concept of a Space Elevator, from NASA Online Image Gallery
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 4 / 14
5. State of the art Mathematical model Conclusion
Introduction
Figura: The system composed by a massless tether and three nanosatellite.
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 5 / 14
6. State of the art Mathematical model Conclusion
Introduction
Figura: SpaceNet System
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 6 / 14
7. State of the art Mathematical model Conclusion
Introduction
Figura: Tethered SPHERES nano-satellites developed by the MIT, ( Chung, Soon-Jo, Thesis, Nonlinear Control and Synchronization of
Multiple Lagrangian Systems with Application to Tethered Formation Flight Spacecraft)
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 7 / 14
8. State of the art Mathematical model Conclusion
Six-body system model in reference frame
Figura: Six-body system model in reference frame
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 8 / 14
9. State of the art Mathematical model Conclusion
Six-body system model in reference frame
The masses of the bodies (mi ) are the same, in the first hypotheses.
For the coordinates system the components of center of mass posi-
tion vector (x0, y0, z0) are:
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
x0 = cos(僚) y0 = sin(僚) z0 = 0
x1 = x0 + l1 cos(僚 + ) cos() y1 = y0 + l1 sin(僚 + ) cos() z1 = l1 sin()
x2 = x0 l2 cos(僚 + ) cos() y2 = y0 l2 sin(僚 + ) cos() z2 = l2 sin()
x3 = x0 l3 sin(僚 + ) cos() y3 = y0 + l3 cos(僚 + ) cos() z3 = l3 sin()
x4 = x0 + l4 sin(僚 + ) cos() y4 = y0 l4 cos(僚 + ) cos() z4 = l4 sin()
x5 = x0 l5 cos(僚 + ) sin() y5 = y0 l5 sin(僚 + ) sin() z5 = l5 cos()
x6 = x0 + l6 cos(僚 + ) sin() y6 = y0 + l6 sin(僚 + ) sin() z6 = l6 cos()
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 9 / 14
10. State of the art Mathematical model Conclusion
Six-body system model in reference frame
The masses of the bodies (mi ) are the same, in the first hypotheses.
For the coordinates system the components of center of mass posi-
tion vector (x0, y0, z0) are:
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
x0 = cos(僚) y0 = sin(僚) z0 = 0
x1 = x0 + l1 cos(僚 + ) cos() y1 = y0 + l1 sin(僚 + ) cos() z1 = l1 sin()
x2 = x0 l2 cos(僚 + ) cos() y2 = y0 l2 sin(僚 + ) cos() z2 = l2 sin()
x3 = x0 l3 sin(僚 + ) cos() y3 = y0 + l3 cos(僚 + ) cos() z3 = l3 sin()
x4 = x0 + l4 sin(僚 + ) cos() y4 = y0 l4 cos(僚 + ) cos() z4 = l4 sin()
x5 = x0 l5 cos(僚 + ) sin() y5 = y0 l5 sin(僚 + ) sin() z5 = l5 cos()
x6 = x0 + l6 cos(僚 + ) sin() y6 = y0 + l6 sin(僚 + ) sin() z6 = l6 cos()
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
l1 = m1lx
m1+m2
l2 = m2lx
m1+m2
l1 + l2 = lx
l3 = m3ly
m3+m4
l4 = m4ly
m3+m4
l3 + l4 = ly
l5 = m5lz
m5+m6
l6 = m6lz
m5+m6
l5 + l6 = lz
錚
錚
錚
錚
錚
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 9 / 14
11. State of the art Mathematical model Conclusion
The equations of motion of the spacecraft
The Lagrange Equations of motion is ordinary differential equations,
which describe the motions mechanical systems under the action of
forces, can be obtained by L = T V. For the following analysis, the
generalized coordinates are and .
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 10 / 14
12. State of the art Mathematical model Conclusion
The equations of motion of the spacecraft
The Lagrange Equations of motion is ordinary differential equations,
which describe the motions mechanical systems under the action of
forces, can be obtained by L = T V. For the following analysis, the
generalized coordinates are and .
錚
錚
錚
錚
錚
錚
錚
錚
錚
d
dt
L
dL
d
= Q
d
dt
L
dL
d
= Q
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 10 / 14
13. State of the art Mathematical model Conclusion
The equations of motion of the spacecraft
The Lagrange Equations of motion is ordinary differential equations,
which describe the motions mechanical systems under the action of
forces, can be obtained by L = T V. For the following analysis, the
generalized coordinates are and .
錚
錚
錚
錚
錚
錚
錚
錚
錚
d
dt
L
dL
d
= Q
d
dt
L
dL
d
= Q
4(1+e cos(僚))
0 + 1
cos2()
lxlx0 + lyly0
+4lzlz0
0 + 1
sin2()(1+e cos(僚))+lz2
sin2()
200(1 + e cos(僚)) 4e sin(僚)+
3 sin(2) + 20
0 sin(2)(1 + e cos(僚)) 2e sin(僚) sin2()
+ 20 sin(2)(1 + e cos(僚)) = cos()
2
lx2 + ly2
2
0 + 1
0 sin()(1 + e cos(僚)) + e sin(僚) cos()
00 cos()(1 + e cos(僚))
+ 3
ly2 lx2
sin(2) cos()
2
lx2 + ly2 + lz2
(1 + e cos(僚))00 2e sin(僚)0
+
0 + 1
2
sin(2)(1 + e cos(僚))
lx2 + ly2 lz2
+ 40(1 +
e cos(僚))
lxlx0 + lyly0 + lzlz0
+ 3 sin(2)
lx2 cos2() + ly2 sin2()
3lz2 cos2() sin(2) = 0
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 10 / 14
14. State of the art Mathematical model Conclusion
Equilibria
Considering the cable length in the direction constant z (lz = const)
and uniform rotations ( = 僚 +0), with =
2 , the equation provides
solution, depending on the orbit eccentricity (Eq. 11), not dependent
on the cable length (lx, ly, lz).
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 11 / 14
15. State of the art Mathematical model Conclusion
Equilibria
Considering the cable length in the direction constant z (lz = const)
and uniform rotations ( = 僚 +0), with =
2 , the equation provides
solution, depending on the orbit eccentricity (Eq. 11), not dependent
on the cable length (lx, ly, lz).
Mathematically, a point is in equilibrium when its speed and accele-
ration are equal to zero, then assume 0
= 0
= l0
(lx, ly, lz) = 0 and
00
= 00
= l00
= lx00
= 0.
e =
3 csc(僚) sin(2僚)
4( + 1)
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 11 / 14
16. State of the art Mathematical model Conclusion
Equilibria
Figura: Tether length control for eccentricity (e), =
2
and 0 = 0.
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 12 / 14
17. State of the art Mathematical model Conclusion
Conclusion
1 The mathematical model is based on a model where perturbations
of the motion are not included, and where the gravity does not
influence the orientation of the system.
2 Stability conditions give the values of e and where the system is
stable, Stability intervals were found for the system with numerical
integration for the monodromy matrix small perturbations wont
change the behavior of the system in these intervals.
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 13 / 14
18. State of the art Mathematical model Conclusion
Obrigado pela Aten巽達o!
Contato:
denilson.santos@unesp.br
Figura: https://orcid.org/0000-0003-2682-4043
Denilson Paulo Souza dos Santos UNESP-SJBV Space Tethers 17 de junho de 2024 14 / 14