際際滷

際際滷Share a Scribd company logo
Explaining and
Harnessing
Adversarial Examples
(2015)
Ian J. Goodfellow, Jonathon Shlens,
Christian Szegedy
@mikibear_ 朱 襴 170118
旧,
ADVERSARIAL EXAMPLES
旧,
ADVERSARIAL EXAMPLES
 ...?
蟇一 手覺
Intriguing properties of neural networks
(2013, Christian Szegedy at el.)
覿襯襯  企 ろ語 覈 覓願碓 襯 螳企
ex) Alexnet, VGG, ResNet, Inception...
 朱語 れ螻 螳  螳レ  
(Examples)襯 
覿襯 覈 : "願 'ろ' 螳"
( 螳)
覿襯 覈 : "願 'ろ' 螳螳 "
?????????
Explaining and harnessing adversarial examples (2015)
伎
語伎
襦 覿襯
覲 讌
 confidence襦
る襯 讌
,   讌 るジ 讌.
'朱 覿襯 讌'
'  語伎'襯 覃
'覈覦燕蟆 る襯 讌' 襷 
も
 蟆 覲 朱語 讌.
蠏朱  讌  螳螳 襷 朱慨企?
螳 (99%)
"譟" (99%)
蠏朱  讌  螳螳 襷 朱慨企?
螳 (99%)
"譟" (99%)
蠏碁 企 語伎襯 企至
蟆 谿場  ?
覓企  Optimization Problem...
覓企  Optimization Problem...
覿襯 覈語
Black-box 
覲 企語
語伎 朱襖
1) 企語 語伎襯 
る襯襯 殊狩る 語伎襯 谿城,
2) Norm 螳  蟆 谿場 
襴覃...
蠏 れ  Optimization 蠍磯
蟇碁 . 朱語 L-BFGS襯
蟇瑚 給.
蠏朱  覓語 Non-convex朱れ
Explaining and Harnessing Adversarial Examples
(2015, Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy)
れ 豌朱 ...
譬  ク蟆
企 Adversarial Example襯
谿場  蟾?
Linear Model...
襯 螳ロ 蟆 れ
Decision Boundary襯 蟆
蠍磯 term 谿場朱癌
(磯殊 覈語 レ
high-dimension殊襦
企 襯 谿剰鍵
讌.)
Non-linear model linear 語伎 る
Adversarial Example 襷り鍵
"The linear view of adversarial
examples suggests a fast way of
generating them. We hypothesize that
neural networks are too linear to resist
linear adversarial perturbation."
"neural networks
are too linear"
Explaining and harnessing adversarial examples (2015)
蠏碁蟾
Non-linearり 覦れ讌 覈語
襷 linear perturbation l伎 蠏 覈語
蟾讌る, 蠏 覈語 豢覿 linearり 覲
 も
企 襷.
Non-linear model linear 語伎 る
Adversarial Example 襷り鍵
Backpropagation朱 覓企 所 蟲 

Gradient
Google
LeNet
VS
Linear Perturbations
Explaining and harnessing adversarial examples (2015)
Explaining and harnessing adversarial examples (2015)
LeNet, 覦
豌覯讌 覓,
'企蟆 詞伎 Adversarial Example
螳り れ 覈語 旧る 企蟾?'
Explaining and harnessing adversarial examples (2015)
蟆磯,
'Adversarial Example 豌伎
螻手 企   訖襷 ,
Model Generalization 螻朱 .
讌 蠏 焔レ Dropout覲企る .'
(蟆) 讌襷,
覈覈 るジ 朱碁れ 覲企 螻手  
螻, 讌  るジ Adversarial
Example 語り  譬 蟆所伎
 覿覿 螳給.
覯讌 覓,
'蠏碁覃 譬  Non-linear RBF
network 企り?'
,
譬  覲 一危一 訣蟆 谿願 .
讀, Adversarial Example 譬  robust譯.
碁讌 覓,
'Ensembel 蠍磯 磯 譬 讌 蟾?' ->  るれ.
る讌 覓,
'誤 手朱 distortion 蟇碁伎 旧 る 譬 讌
蟾?' ->  るれ.
朱語 蟆磯,
1) Universal approximation theorem
 譟危 覈 覈語
Adversarial Example 襷蠍一 覓
Linear
2) 蠏朱 Adversarial Example襦 覈語
旧る 譬
References,
1) Intriguing properties of neural networks
https://arxiv.org/abs/1312.6199
2) Explaining and Harnessing Adversarial Examples
https://arxiv.org/abs/1412.6572
3) Adversarial Examples
http://www.iro.umontreal.ca/~memisevr/dlss2015/goo
dfellow_adv.pdf
襴 伎 蟇磯 譴 觜語 蟆曙 れ殊語!
@mikibear

More Related Content

Explaining and harnessing adversarial examples (2015)