This document contains an exam for a surveying course with 5 questions. Question 1 involves calculating the horizontal distance between two points using angle and tape length measurements. Question 2 involves calculating elevations of points using inclined stadia readings and computing cut depths for an underground sewage pipe. Question 3 involves calculating the area of a plot using UTM coordinates measured by total station and calculating a volume using prismoidal formula. Question 4 involves calculating bearings, azimuths and coordinates for a traverse. Question 5 involves calculating stations and coordinates for points on a horizontal curve given the degree of curvature, azimuths and coordinates of one point.
1 of 13
Download to read offline
More Related Content
Final term 2012-2013 D1
1. AL-MANSOUR UNIVERSITY COLLEGE
FINAL EXAMINATION 2012- 2013 FIRST ATTEMPT
Subject: SurveyingDept: Civil Engineering
Date: 20th
Jun 2013Year:2012-2013
Time: Three hoursExaminer: Ehab T. Ibrahem
Note: Answer Four Questions Only.
Q1)
For the purpose of measuring the horizontal distance (DAB) shown
in the figure, a (40-m) steel tape is used to take the following
horizontal measurements (DAC): (73.097, 73.245, 37.222 and
73.298 m) respectively.
Angle (C) is (62< \ 1').
Angle (A) is (90< \ 0').
If the actual length of the tape is (40.02 m):
1. Compute the most probable value of the horizontal distance (DAC)
and its standard error.
(12marks)
2. Compute the horizontal distance (DAB) and its standard error.
(13marks)
Q2)
a) For the purpose of measuring the elevation of
point (B) in figure below, inclined stadia
reading were taken at point (A) on the (2nd
)
floor, the readings are as given in the table:
1. Compute the horizontal distance (DAB).
2. Compute the elevation of point (B).
(12marks)
b) For the same figure, a crane is used for underground sewage pipe construction, from point (B), the staff
reading on point (C) is (1.40) and for point (D) is (3.422 m), if the required sewage pipe elevation at
point (C) is (-4.00 m), calculate cut depths at points (C) and (D).
Note: Sewage pipe slope is (12%) and (hi = 1.5m) at point (B).
(13marks)
Theodolite
station
Reading at point (A)
Inclined stadia reading V.A
F.RU M L
Point (B)
(hi =1.5 m)
1.595 1.5 1.405 308< 33' 5"
2.597 2.5 2.403 311< 44' 14.5''
Page 1 of 2
A
Structure Building
Roof elevation (+12.00 m)
B
3m
3m
3.2m
Truck
C DG F
1st
F
2nd
F
Sewage pipe
Crane
12%Elev (-4.00m)
9 m
depth
depth
CA
River
B
2. Q3)
a) For the purpose of measuring the area in the figure shown, a
total station is used to measure the (UTM) system coordinates;
the reading are as follows:
Point E N Z
1 210.747 271.007 34.987
2 309.706 271.007 33.567
3 309.706 172.048 36.287
4 210.747 172.048 32.651
Calculate the area.
(12marks)
Q3
b) Calculate the volume of the earthwork
between two cross-sections as shown in
the table by prismoidal formula if the
formation width of the road is (7 m):
(13marks)
Q4)
For traverse (ABCDE) by using the
angles to the right:
1. Tabulate and calculate the bearings
and azimuths of all lines.
(12mark)
2. If side (AE) is (50 m) long and point
(A) coordinates are (200,200), find
point (E) coordinates.
(13mark)
Q5)
Two sides (AB) and (BC) are connected by a horizontal
curve as shown in the figure, the degree of curvature of
the curve is (8<) calculated on a standard chord of
(100m). If azimuth of (AB) is (50<) and (BC) is (140?),
length of (BC) is (950 m), station of (A) is (10+32.62)
and of (B) is (25+32.62), the coordinate of point (A) is
(2000, 2000), calculate:
1. Stations of (PC, PT, and point C).
2. The coordinates of (PC).
(12marks)
3. If the station of point (G) is (19+00), find point (G) coordinates.
Q4)
(13 marks)
Station
Cross-section Area
L C.L R Cut (m2
) Fill (m2
)
62+60
f 2.5
7.34
f 3.3
0.0
f 3.8
8.7
0.0 ?
62+90
f 0.7
6.05
f 1.4
0.0
f 1.4
6.3
0.0 ?
Page 2 of 2
1
st
point
2
nd
point 3
rd
point
4
th
point
Area?
4. 4
*9" '
4<./-1' >:z!_l!! !il. trn, ./ _ / f t; g ,fu/ K : f.L"-rH/"c/,-?-k'._rI'
D^. -- +l=.n .l-""JJ tiu {l ,it ;o",
71. Z+s X,= 13,t)1 r't
t7' ztz ---J'l'+ etr'v lz> J) zt1 .^'t'ty^
7l zyv
1et<te-t etr'v
7"t,,;ir ,'it'xr=13
7,,^ o,
40
4 0,02
11. a17
)<,
F=. X 'r1^'-r)7
/- fa,r/.tvl /
13
(trof A *n. ^r.,^
4@
7
241
//
F*N =r U-
irJ '2- --
.l
)
tt th4rtv't- tt -1-
,^ "1t. L)1
= A.o3?_
: O, OJ
2rL'*a,oz)+o5rtl
d,oZtToS
L
J).{t
:
7-
.' (. I /
2 - )+.t,dlqT;l ptto,
Fxi
A.
( tr trn)'-= (t<n c)z(t Ac)' *( A( r",'c)' ( :-',5 I , .----.
= (,n tz)'( d'oe)' *f+t'241 * t""(/.D.J' (
k " k ) fi
= r.ot2a *-(1t.241r'+.s77)' ( y +a,s tn-D)
=!tt,t,rr.u4 l
6,to4t1_--_
-JJ
X
t u,"dot
6)
r]
5. (rlq)Q- (*)
R*.- R.*,
rl .
{-.-.* ^l r'', S, r
7, ) ./.
A,4 t4 S
D
Wl; Jt'D
V.,=])1"
,:-ta
't4 14. s),
'Y
(4t
)or-
D --tou (u-r1 c"L (v't .,,
P'( i'5ts - r"4's) c's "
, r L
,o'Lz'51-l'24attes
a/
t2
5
7t)
//-1,
I (tt
2
( D^
^ = z 5- /.5 _-___------;-; AB- --
"'' -Lqn(4t 44
'f,)-t*(s8as
7 '7?/ p
."/./. t 3. 47L= 6.1)3 +t,5_ 1,281
el,"(D)=//4,'+^i- -c4
>lo -*f
i ,or
1*
-'----^--'-1)L.-i^- t
^ /a" I
t( 5= r'"8 l
L-- ""=-
0t (h) -+
3n^+11 *'l: o'tt,s-r-r 5't'4
E[cv ltt'
'= o4Jl ]el.v l'/- = a.-"r..
"/ n,p, )
) S, --h (r'tl ' / ,,,
4 -7''t 14 (i y'l (t)
J..-
c,t -{+ q)
9. (h Yr)
>1 1
6z -rlo
{z-7)
A,9').---.--.-4
Xrl 41(,r/
/l. /// -
v-)/ lj'n')
4-4
t
Lr,. r,,
/
h $/il
Lqq-
--..'..-...-.|-T'tnrl;2 /2Lr {94a" ,60 "b,4
l,L' I'lt1
/,:-
I'of
t# lt x 11 M4/
6z+fo
Ll
t l,/l
/ 't,
l t,A
{-+4' '/,b')
12,12/
35
[t t.t z, ,'/
( 2.s1")
(.t,5t") ,7 x
x -+r+ (tt *--'un
r -.i /- $.? )( -" ,
712 + AL'c'l
t+-421 -'/
f / ^t. I I G5.7
)^tt
rtln=ll -2.5
LI
11
) .-'
A
F-I
(+.ta,-tt1 6i,+t1 ( 1,+ r-3'6)
=- 74,q gt
v < ?U,n 4 A^.r 4,)
".{l
=
*xs.attt4(tttaa)
ttL'11)) =
11, Lt-+L'
I
7
4
l
*
-7-5n-,
b.T
o,
--.4,-r4
-4-5
q
I
10. ,<
?.C
..-1 <
1"/
/2
.- {.{.1'
-1.
t
t4
t
nL/
b
-2,4
_2 ,+5
*t.(
6
((
I /44
(7 s, A.()
Btj
47 -t( 4.t
(B)
-t. t
,,-
)')
/,)
,
-/,b5
-t.,
(/,)
ae )a
p-,',f
I
I
L
t
4
' I
)
J
f/ _2,zsa -/rz: /tr_2.>
to=[ -'(1 -'
i
7r/
(a, -z.zs)
+ /+-/z> :V zst
-'i /' +10)
L4
P';+t
(6../ -/.4/
1. I
3,5 /+r'411
t,ot-''a lJ
/
^'a,n'1
l-t'os, -o'') , ^"
/ (ot */'/l)
al -1.4
^
-l "tl
1,A=Li -r,, r-'o)
1/, = L4'L4
/,= [2.]L y
I
t
7
4
I
I
/
/
--t,4I
.- /.4
_o,4
/
@i
11. dpr
5'1dra.
AI
/'.1. a 7,'h,uf/
A^ I r n O
Azrhvtl AlJ - rty
- +/$u
....>
' A*.BA |ot'----_--.'-i)
4rqtl< +('1o
? /.
) b"
C/,)
.5, at"
A9
Bc
cn
ac
A
lL5
1/
,4 el
'1 I
fio
7-4 4
t,
hon'i'5
oF
s9s k
sbq,e
[l +1
M'Jo w
S L4'^
b
tt+
AZ6 = 244
+lIo
-7A *
- 36u
.--.->
A4.n e 61
--5i
/ t t2, t )./
='--
-.->
A!fr
* q of{-=
A1 rQ lAt/ e,_t) - ,r
Y < t?(D t38 --
401* 3 6o
ltt
AL.c P 17
+ tta
llJ Ar ?L1' e. '-.,/r -
-l
,
| ". - t/ r- 5f-r-LUb
--> ^ rt r.
hL.OE LV'
/go
4b"
--Y:-
u+
r44
- ""t--al-
------:-11,
+:Jt
-
a= I 4,$ /t,,
(E-z)$0. S4a'
<fB
n"t4tl
'n,,..[ qllf t7tr
+ lA6)t
.--:1p-;.'. < (d9, qJ
t --
A7fr = AL'AE o bt = [4+/t' tz,
"y v
12. rI'IP
I
i
(ah).r (t4(b)
/Fj
: Ly F,uGd =
tr't'/^'/o
FrL(rte)' (A
a't--#!^ G (r, t/
.-oY$..)
E
I
a(4 ' X(o,r tne
( t-/ Lf. /
/'2
/, z1 - r r-
- 'uP'r '/
(wtW)
5i.^ A Z 46)
/ r t)'- t--4 4,177 lvl
Jrt t b'r/^
,./. r A .
/ (Ll = 'L&'t )", -///
x (-)( 64) :,LI, l' 1 l{
f
t ,- E ( 244 11 ,'z'1'
q'6
o
a
13. ( t ,-/l z
r.rlt." =
'
L"-
40".- 7o'= 1o'
fA) - s^( '( = 1
I L/ - z- '/
z,
'
T= <*^H =at/>. /71u
L. . Qr^r( - lItT;TtW
=-4r/ r,t' (i;,ff)=r,t4,1q1 a A
d
j tl21 n
-rrV
^ r- .<-
,0" ={<7Ex>u)
{?t1lt6'lq+'m
3,912 -= R Q, ,
^1 rf
..? $j, 54A =1,1;t"'+ !!',
r
ia=)
. 0,= I 4l /o,l
d''1,
' t:4 4 trt rt'
C1= zR si't O' ,' a .:')
C,- z /1tt l1+ t,', ( L 4r /t t '
= / 1,{.'1X4 .},1 :-'oo.J.-'.r^:1
X PC = looo af l8t6'127^ t0''u)
Y PC. Zuu' + I- A{7'8"t }| * il
ffiQ,tz-r5d")n'-l
2' (,00,+nt l 6b'-1114 ;' t ( sl' 2".
. J-r z,.t t/.1 J1y' /'- / r,' ',.1.
'1 G =
zto),tlJ + /6t 111 L ")L )) ta
C
z+34,2;4, Llo/,36
1j
(e
,' (fo
> ( 5o
y,o i)'
b,,1')=
7734,2rI a
zLa|.)g rn
zs+12,1,4
1$+ rL'4t)
PC - FI --f=
z5 j),62 -1t6.ttl
ftq'
= /gtL,4z7.n
=51'o11[,4[t)t___--..,,r
"i' I il'r25'uu-
p;irq7v-77=l
t'l 4,
t'l q
?c :-
5l c
Gst"- )lttrt - /tr// 42
t) {-
.1 <,t t < zt.A) -1-1Ju = sl 62',-l)v='-")-'" | --i----
?4 92.6L.----.''-| " .,1 a1 At- |
5 4 1- D.-' " " I
I
l1g,+ ft'4tt
l_:_------6
"). 2b01,427 )-'
')= 25t),'611
^
't
'l4 +$L'bL
l0i It
-2ltu,
41'A,B el'w
00atL0 0c