際際滷

際際滷Share a Scribd company logo
Q1 2012

ESGF 5IFM Q1 2012

Vincent JEANNIN  ESGF 5IFM

vinzjeannin@hotmail.com

Financial Econometric Models

1
Interim Exam Sum Up
Reminder of Last Session
Generic case AR, MA, ARMA & ARIMA
Heteroscedasticity: Introduction

ESGF 5IFM Q1 2012






vinzjeannin@hotmail.com

Summary of the session (Est. 3h)

2
ESGF 4IFM Q1 2012

1

vinzjeannin@hotmail.com

Interim Exam Sum-Up

3
When E is minimal?
When partial derivatives i.r.w. a and b are 0

Attention, logarithms are not additive!

vinzjeannin@hotmail.com

Minimising residuals

ESGF 5IFM Q1 2012

Two parameters to estimate:
 Intercept 留
 Gradient 硫

4
Change the variable
Z=ln(X)
vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012

Solution?

5
vinzjeannin@hotmail.com

ESGF 4IFM Q1 2012

Leads easily to the intercept

6
7

vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012
vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012

We have
and

Finally
8
Z=ln(X)
vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012

Dont forget

9
Accept or reject the regression?

vinzjeannin@hotmail.com

Hedging is linear

ESGF 5IFM Q1 2012

No forecast possible (one particular stock against the market)

Check correlation and R Squared
10
Check the normality of residuals
11

vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012
Ultimate decider is the normality test on the residuals

vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012

For every dataset of the Quarter

12
Trend

Fit

Seasonality

Forecast

Residual

vinzjeannin@hotmail.com

Identify

ESGF 5IFM Q1 2012

2

13
Lag 0, Auto Correlation is 1

Lag 1

ESGF 5IFM Q1 2012
vinzjeannin@hotmail.com

ACF = Auto Correlation in the series

Lag 2
14
Regression of the series against the same series retarded
15

vinzjeannin@hotmail.com

ESGF 4IFM Q1 2012
Marginal Auto Correlation

ESGF 4IFM Q1 2012
vinzjeannin@hotmail.com

PACF = Partial Auto Correlation in the series

Conditional Auto Correlation knowing the Auto Correlation at a
lower order
16
vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012

3

17
18

vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012
19

vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012
20

AR(1)
vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012
Exploitation
Identify

Auto Correlation Analysis

Fit

Estimate the parameters

Forecast

vinzjeannin@hotmail.com

Reminders of the 3 steps

ESGF 4IFM Q1 2012

Reminder of the last session

21
Trend
Seasonality

Residual

ESGF 4IFM Q1 2012
vinzjeannin@hotmail.com

Reminders of the 3 components

22
There is a correlation between current data and previous data

Parameters of the model
White noise

vinzjeannin@hotmail.com

Main principle

ESGF 4IFM Q1 2012

AR

AR(n)
If the parameters are identified, the prediction will be easy

23
24

vinzjeannin@hotmail.com

ESGF 4IFM Q1 2012
25

vinzjeannin@hotmail.com

ESGF 4IFM Q1 2012
26

vinzjeannin@hotmail.com

ESGF 4IFM Q1 2012
PACF cancelling after order 1

ESGF 4IFM Q1 2012
vinzjeannin@hotmail.com

ACF decreasing

27
Typically an Autoregressive Process

vinzjeannin@hotmail.com

PACF cancel after order 1

ESGF 4IFM Q1 2012

Decreasing ACF

AR(1)
28
vinzjeannin@hotmail.com

Modl<-ar(diff(DATA$Val),order.max=20)
plot(Modl$aic)

ESGF 4IFM Q1 2012

Lets try to fit an AR(1) model

29

The likelihood for the order 1 is significant
> ar(diff(DATA$Val),order.max=20)

Coefficients:
1
2
0.5925 -0.1669

sigma^2 estimated as

0.8514

vinzjeannin@hotmail.com

Order selected 3

3
0.1385

ESGF 4IFM Q1 2012

Call:
ar(x = diff(DATA$Val), order.max = 20)

We know the first term of our series

30
Box-Pierce test
data: Modl$resid
X-squared = 7e-04, df = 1, p-value = 0.9789

vinzjeannin@hotmail.com

Box.test(Modl$resid)

ESGF 4IFM Q1 2012

Need to test the residuals

H0 accepted, residuals are independently distributed (white noise)

The differentiated series is a AR(1)

31
Stationary series with auto correlation of errors

Parameters of the model
White noise

vinzjeannin@hotmail.com

Main principle

ESGF 4IFM Q1 2012

MA

MA(n)
More difficult to estimate than a AR(n)

32
33

vinzjeannin@hotmail.com

ESGF 4IFM Q1 2012
PACF decays to 0

vinzjeannin@hotmail.com

ACF cancels
after order 1

ESGF 4IFM Q1 2012

acf(Data,20)
pacf(Data,20)

34
ACF & PACF suggest MA(1)
> arima(Data, order = c(0, 0, 1),include.mean = FALSE)

sigma^2 estimated as 0.937:

log likelihood = -138.76,

> Box.test(Rslt$residuals)
Box-Pierce test
data: Rslt$residuals
X-squared = 0, df = 1, p-value = 0.9967

It works, MA(1), 0 mean, parameter -0.4621

aic = 281.52

vinzjeannin@hotmail.com

Coefficients:
ma1
-0.4621
s.e.
0.0903

ESGF 4IFM Q1 2012

Call:
arima(x = Data, order = c(0, 0, 1), include.mean = FALSE)

35
The series is a function of past values plus current and past values of the noise

ARMA(p,q)

Combines AR(p) & MA(q)

vinzjeannin@hotmail.com

Main principle

ESGF 4IFM Q1 2012

ARMA

36
37

vinzjeannin@hotmail.com

ESGF 4IFM Q1 2012
ESGF 4IFM Q1 2012
vinzjeannin@hotmail.com

Both ACF and PACF decreases exponentially after order 1

38
vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012

Generic case AR, MA, ARMA & ARIMA

39
ARIMA(p,d,q), AutoRegressive Integrated Moving Average

vinzjeannin@hotmail.com

Non stationary But can be removed with a differentiation of d

ESGF 5IFM Q1 2012

Combines AR(p) & MA(q)

40
Typical ARIMA
vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012

Non stationary

41
Identification easier

vinzjeannin@hotmail.com

ESGF 5IFM Q1 2012

Differentiation (d order)

MA(2)
42
Original series is ARIMA(p,d,q)

vinzjeannin@hotmail.com

If the d differentiation is an ARMA(p,q)

ESGF 5IFM Q1 2012

Integration of the initial differentiation

43
When there is hetoroscedasticity, not applicable

Conditional heteroscedasticity is the answer

It assumes the current variance of
residuals to be a function of the actual
sizes of the previous time periods'
residuals

vinzjeannin@hotmail.com

AR, MA, ARMA, ARIMA imply stationary series

ESGF 5IFM Q1 2012

Heteroscedasticity: Introduction

44
GARCH(p,q)
ARMA (p,q) with heteroscedasticity

ESGF 5IFM Q1 2012

AR (q) with heteroscedasticity

vinzjeannin@hotmail.com

ARCH(q)

45
vinzjeannin@hotmail.com

Variance is very rarely stable

ESGF 5IFM Q1 2012

Useful for financial series

46

More Related Content

Financial Econometric Models IV

Editor's Notes

  • #8: As we have b, we can replace it in the equation of the regression line
  • #12: Francis AnscombeWhich is the best linear fit?On what basis?