This document summarizes a session on econometric modeling. It discusses autoregressive (AR), moving average (MA), autoregressive moving average (ARMA), and autoregressive integrated moving average (ARIMA) time series models. It also introduces the concepts of heteroscedasticity, autoregressive conditional heteroscedasticity (ARCH), and generalized ARCH (GARCH) models to account for non-constant variance in time series data. Examples are provided to illustrate identifying and fitting AR, MA, ARMA and ARIMA models.
2. Interim Exam Sum Up
Reminder of Last Session
Generic case AR, MA, ARMA & ARIMA
Heteroscedasticity: Introduction
ESGF 5IFM Q1 2012
vinzjeannin@hotmail.com
Summary of the session (Est. 3h)
2
4. When E is minimal?
When partial derivatives i.r.w. a and b are 0
Attention, logarithms are not additive!
vinzjeannin@hotmail.com
Minimising residuals
ESGF 5IFM Q1 2012
Two parameters to estimate:
Intercept 留
Gradient 硫
4
10. Accept or reject the regression?
vinzjeannin@hotmail.com
Hedging is linear
ESGF 5IFM Q1 2012
No forecast possible (one particular stock against the market)
Check correlation and R Squared
10
Check the normality of residuals
14. Lag 0, Auto Correlation is 1
Lag 1
ESGF 5IFM Q1 2012
vinzjeannin@hotmail.com
ACF = Auto Correlation in the series
Lag 2
14
Regression of the series against the same series retarded
16. Marginal Auto Correlation
ESGF 4IFM Q1 2012
vinzjeannin@hotmail.com
PACF = Partial Auto Correlation in the series
Conditional Auto Correlation knowing the Auto Correlation at a
lower order
16
23. There is a correlation between current data and previous data
Parameters of the model
White noise
vinzjeannin@hotmail.com
Main principle
ESGF 4IFM Q1 2012
AR
AR(n)
If the parameters are identified, the prediction will be easy
23
31. Box-Pierce test
data: Modl$resid
X-squared = 7e-04, df = 1, p-value = 0.9789
vinzjeannin@hotmail.com
Box.test(Modl$resid)
ESGF 4IFM Q1 2012
Need to test the residuals
H0 accepted, residuals are independently distributed (white noise)
The differentiated series is a AR(1)
31
32. Stationary series with auto correlation of errors
Parameters of the model
White noise
vinzjeannin@hotmail.com
Main principle
ESGF 4IFM Q1 2012
MA
MA(n)
More difficult to estimate than a AR(n)
32
36. The series is a function of past values plus current and past values of the noise
ARMA(p,q)
Combines AR(p) & MA(q)
vinzjeannin@hotmail.com
Main principle
ESGF 4IFM Q1 2012
ARMA
36
40. ARIMA(p,d,q), AutoRegressive Integrated Moving Average
vinzjeannin@hotmail.com
Non stationary But can be removed with a differentiation of d
ESGF 5IFM Q1 2012
Combines AR(p) & MA(q)
40
43. Original series is ARIMA(p,d,q)
vinzjeannin@hotmail.com
If the d differentiation is an ARMA(p,q)
ESGF 5IFM Q1 2012
Integration of the initial differentiation
43
44. When there is hetoroscedasticity, not applicable
Conditional heteroscedasticity is the answer
It assumes the current variance of
residuals to be a function of the actual
sizes of the previous time periods'
residuals
vinzjeannin@hotmail.com
AR, MA, ARMA, ARIMA imply stationary series
ESGF 5IFM Q1 2012
Heteroscedasticity: Introduction
44
45. GARCH(p,q)
ARMA (p,q) with heteroscedasticity
ESGF 5IFM Q1 2012
AR (q) with heteroscedasticity
vinzjeannin@hotmail.com
ARCH(q)
45