ݺߣ

ݺߣShare a Scribd company logo
FİNANSAL
MATEMATİK
Hedging, Arbitraging, Pricing
Eğitim Program Taslağı
Mart 2015
Doç. Dr. Kutlu MERİH
 Bu sunum Finansal Matematik Analiz
için gerekli ve temel olan konuları
içeriyor.
 Bunlara ek yapılabilir veya daraltılabilir.
 Her konu wikipedia ile bağlantılı hale
getirilmiştir.
 Böylece içerik ve kapsam hakkında fikir
edinilebilir.
Temel Matematik
 Calculus
 Power / Taylor Series
 Differential Equations
 Real Analysis
 Mathematical models
Olasılık ve Dağılımlar
 Probability
 Probability Distributions
 Quantile Functions
 Value At Risk
 Expected Value
 İntegral Dönüşümler
 Moment Üreten Fonksiyon
 Laplace Transformation
 Karakteristik Fonksiyon
Stokastik Prosesler
 Binomial Distribution/Process
 Normal Distribution/Process
 Log-normal Distribution/Process
 Poisson Distribution/Process
Korelasyon - Kointegrasyon
 Korelasyon
 Kointegrasyon
 Copulas
 Gaussian Copulas
 Diğer Copulas
Volatilite/Heteroscedasticity
 Volatility
 ARCH model
 GARCH model
 Stochastic volatility
 SABR Volatility Model
 Markov Switching Multifractal
Stokastik Analiz
 Risk-neutral Measure
 Stochastic Integrals
 Chapman-Kolmogorov KDD
 Partial Differential Equations
 Heat Equation
 Stochastic Differential Equations
 Itô's Lemma
 Stochastic Calculus
 Brownian Motion
 Lévy Process
Bu kısma ben talibim: K. M.
Türev Ürün Fiyatlama
 The Brownian Motion Model of Financial Markets
 Rational pricing assumptions
 Risk neutral valuation
 Arbitrage-free pricing
 Futures
 Futures contract pricing
 Options
 Put–call parity (Arbitrage relationships for option
 Intrinsic value, Time value
 Moneyness
Black-Scholes Fiyatlama
 Black–scholes Model
 Black Model
 Binomial Options Model
 Monte Carlo Option Model
 Implied Volatility, Volatility Smile
 Optimal Stopping (Pricing Of American Optio
)
Türev Ürün Duyarlılığı: Grekler
 Gamma
 Lambda
 Rho
 Speed
 Theta
 Ultima
 Vanna
 Vega
 Vomma
 Zomma
 The table shows the relationship of the more common sensitivities to
the four primary inputs into the Black-Scholes model
 (spot price of the underlying security,
 time remaining until option expiration,
 volatility and
 the rate of return of a risk-free investment)
 and to the option's value, delta, gamma, vega and vomma.
 Greeks which are a
 first-order derivative are in blue,
 second-order derivatives are in green, and
 third-order derivatives are in yellow.
 Note that vanna is used, intentionally, in two places as the two
sensitivities are mathematically equivalent.
Spot
Price (S)
Volatility
(σ)
Time to
Expiry
(τ)
Risk-
Free
Rate
(r)
Value (V)  Δ Delta ν Vega Θ Theta ρ Rho
Delta (Δ)  Γ Gamma Vanna Charm
Gamma (Γ)  Speed Zomma Color
Vega (ν)  Vanna Vomma
Dvega
Dtime
Vomma  Ultima
speed
zomma
color
Olasılık Metrik Değişimleri
Girsanov's Theorem
Radon–Nikodym Derivative
Martingale Representation Theorem
Feynman–Kac Formula
Statistical Finance
Alternatif Teknikler
 Asymptotic Analysis
 Ergodic Theory
 Saddlepoint Approximation
Nümerik Teknikler
 Numerical Analysis
 Monte Carlo Method
 Numerical Methods
Laplace Transforms
Fourier Transforms
 Numerical Partial Differential Equations
Crank–Nicolson Method
Finite Difference Method
Finite Elements Method
Faiz Türevleri
Interest rate derivatives
Short rate model
 Hull-White model
 Cox-Ingersoll-Ross model
 Chen model
LIBOR Market Model
Heath-Jarrow-Morton framework
Diğer Destek Konular
 Chaos Theory and Fractals
 Computational Finance
 Quantitative Behavioral Finance
 Derivative (Finance), List Of Derivatives
Topics
 Modeling And Analysis Of Financial
Markets
 International Swaps And Derivatives
Association
 Fundamental Financial Concepts - Topics
 Model (Economics)
 List Of Finance Topics

More Related Content

Finmath egitimi

  • 1. FİNANSAL MATEMATİK Hedging, Arbitraging, Pricing Eğitim Program Taslağı Mart 2015 Doç. Dr. Kutlu MERİH
  • 2.  Bu sunum Finansal Matematik Analiz için gerekli ve temel olan konuları içeriyor.  Bunlara ek yapılabilir veya daraltılabilir.  Her konu wikipedia ile bağlantılı hale getirilmiştir.  Böylece içerik ve kapsam hakkında fikir edinilebilir.
  • 3. Temel Matematik  Calculus  Power / Taylor Series  Differential Equations  Real Analysis  Mathematical models
  • 4. Olasılık ve Dağılımlar  Probability  Probability Distributions  Quantile Functions  Value At Risk  Expected Value  İntegral Dönüşümler  Moment Üreten Fonksiyon  Laplace Transformation  Karakteristik Fonksiyon
  • 5. Stokastik Prosesler  Binomial Distribution/Process  Normal Distribution/Process  Log-normal Distribution/Process  Poisson Distribution/Process
  • 6. Korelasyon - Kointegrasyon  Korelasyon  Kointegrasyon  Copulas  Gaussian Copulas  Diğer Copulas
  • 7. Volatilite/Heteroscedasticity  Volatility  ARCH model  GARCH model  Stochastic volatility  SABR Volatility Model  Markov Switching Multifractal
  • 8. Stokastik Analiz  Risk-neutral Measure  Stochastic Integrals  Chapman-Kolmogorov KDD  Partial Differential Equations  Heat Equation  Stochastic Differential Equations  Itô's Lemma  Stochastic Calculus  Brownian Motion  Lévy Process Bu kısma ben talibim: K. M.
  • 9. Türev Ürün Fiyatlama  The Brownian Motion Model of Financial Markets  Rational pricing assumptions  Risk neutral valuation  Arbitrage-free pricing  Futures  Futures contract pricing  Options  Put–call parity (Arbitrage relationships for option  Intrinsic value, Time value  Moneyness
  • 10. Black-Scholes Fiyatlama  Black–scholes Model  Black Model  Binomial Options Model  Monte Carlo Option Model  Implied Volatility, Volatility Smile  Optimal Stopping (Pricing Of American Optio )
  • 11. Türev Ürün Duyarlılığı: Grekler  Gamma  Lambda  Rho  Speed  Theta  Ultima  Vanna  Vega  Vomma  Zomma
  • 12.  The table shows the relationship of the more common sensitivities to the four primary inputs into the Black-Scholes model  (spot price of the underlying security,  time remaining until option expiration,  volatility and  the rate of return of a risk-free investment)  and to the option's value, delta, gamma, vega and vomma.  Greeks which are a  first-order derivative are in blue,  second-order derivatives are in green, and  third-order derivatives are in yellow.  Note that vanna is used, intentionally, in two places as the two sensitivities are mathematically equivalent.
  • 13. Spot Price (S) Volatility (σ) Time to Expiry (τ) Risk- Free Rate (r) Value (V)  Δ Delta ν Vega Θ Theta ρ Rho Delta (Δ)  Γ Gamma Vanna Charm Gamma (Γ)  Speed Zomma Color Vega (ν)  Vanna Vomma Dvega Dtime Vomma  Ultima
  • 15. Olasılık Metrik Değişimleri Girsanov's Theorem Radon–Nikodym Derivative Martingale Representation Theorem Feynman–Kac Formula Statistical Finance
  • 16. Alternatif Teknikler  Asymptotic Analysis  Ergodic Theory  Saddlepoint Approximation
  • 17. Nümerik Teknikler  Numerical Analysis  Monte Carlo Method  Numerical Methods Laplace Transforms Fourier Transforms  Numerical Partial Differential Equations Crank–Nicolson Method Finite Difference Method Finite Elements Method
  • 18. Faiz Türevleri Interest rate derivatives Short rate model  Hull-White model  Cox-Ingersoll-Ross model  Chen model LIBOR Market Model Heath-Jarrow-Morton framework
  • 19. Diğer Destek Konular  Chaos Theory and Fractals  Computational Finance  Quantitative Behavioral Finance  Derivative (Finance), List Of Derivatives Topics  Modeling And Analysis Of Financial Markets  International Swaps And Derivatives Association  Fundamental Financial Concepts - Topics  Model (Economics)  List Of Finance Topics