Hiroki Sayama and Yaneer Bar-Yam, Formulating evolutionary dynamics of organism-environment couplings using graph product multilayer networks, an invited talk at PhysPlex II: Second Satellite Symposium on Multilayer and Interconnected Networks: Applications, at Conference on Complex Systems 2017 (CCS 2017), September 21, 2017, Cancun, Mexico.
1 of 51
Downloaded 11 times
More Related Content
Formulating Evolutionary Dynamics of Organism-Environment Couplings Using Graph Product Multilayer Networks
9. 9
PRE 65, 051919 (2002)
PRL 88, 228101 (2002)
Cons. Biol. 17, 893-900 (2003)
10. Here we present a theoretical framework
that formulates the evolution of general
organism-environment couplings using
graph product multilayer networks.
Review of graph product multilayer networks
Organism-environment coupling space
Reaction-diffusion evolutionary dynamics
Numerical study
10
11. Review of Graph
Product Multilayer
Networks
11
Sayama (2017) J. Complex Netw., cnx042
https://doi.org/10.1093/comnet/cnx042
https://arxiv.org/abs/1701.01110
14. 14
1
2 3
4
a
b
c
{1, 2, 3, 4} {a, b, c}x
(1, a)
(1, b)
(1, c)(3, a)
(3, b)
(3, c)
(2, a)
(2, b)
(2, c) (4, a)
(4, b)
(4, c)Meta nodes
15. DegreeSpectra: ExactSolutions
15
(1, a)
(1, b)
(1, c)(3, a)
(3, b)
(3, c)
(2, a)
(2, b)
(2, c) (4, a)
(4, b)
(4, c)
(1, a)
(1, b)
(1, c)(3, a)
(3, b)
(3, c)
(2, a)
(2, b)
(2, c) (4, a)
(4, b)
(4, c)
(1, a)
(1, b)
(1, c)(3, a)
(3, b)
(3, c)
(2, a)
(2, b)
(2, c) (4, a)
(4, b)
(4, c)
Layers
Layers
Graph Product
Multilayer Networks
20. DegreeSpectra: ExactSolutions
20
lH
1 lH
2 lH
n
lG
1
lG
2
lG
m
lH
1 lH
2 lH
n
lG
1 lG
1+lH
1 lG
1+lH
2 lG
1+lH
n
lG
2 lG
2+lH
1 lG
2+lH
2 lG
2+lH
n
lG
m lG
m+lH
1 lG
m+lH
2 lG
m+lH
n
23. 23
1
2 3
4
a
b
c
{1, 2, 3, 4} {a, b, c}x
(1, a)
(1, b)
(1, c)(3, a)
(3, b)
(3, c)
(2, a)
(2, b)
(2, c) (4, a)
(4, b)
(4, c)
24. DegreeSpectra: ExactSolutions
24
Sayama, H. (2016) DiscreteApplied Mathematics 205, 160-170.
https://doi.org/10.1016/j.dam.2015.12.006
lH
1 lH
2 lH
n
lG
1
lG
2
lG
m
lH
1 lH
2 lH
n
lG
1 lG
1lH
1 lG
1lH
2 lG
1lH
n
lG
2 lG
2lH
1 lG
2lH
2 lG
2lH
n
lG
m lG
mlH
1 lG
mlH
2 lG
mlH
n
Approximated Laplacian spectrum
40. 40
G, 隆
H, 袖, FH
留, Fe
Dominant
eigenvector
of (F L)
41. 41
Dominant
eigenvector
of (F L)
留, Fe
H, 袖, FH
G, 隆
Fixed
parameters
Random
weighted
graph with
20 nodes
Random
weighted
graph with
20 nodes
10-5 Random
weighted
diagonal
matrix
(20x20)
0.5
Random
weighted
diagonal
matrix
(400x400)
49. Limitations
Considered simple linear dynamics only
No inter-species interactions considered
Diffusion rates independent of organisms
No analytical explanation (yet)
49
50. Next Steps
Including nonlinear, coupled population
dynamics (e.g., replicator equations)
Obtaining analytical conditions by
exploiting GPMNs spectral properties
50