Variational Template Machine for Data-to-Text Generationharmonylab
?
公開URL:https://openreview.net/forum?id=HkejNgBtPB
出典:Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, Lei Li : Variational Template Machine for Data-to-Text Generation, 8th International Conference on Learning Representations(ICLR2020), Addis Ababa, Ethiopia (2020)
概要:Table形式の構造化データから文章を生成するタスク(Data-to-Text)において、Variational Auto Encoder(VAE)ベースの手法Variational Template Machine(VTM)を提案する論文です。Encoder-Decoderモデルを用いた既存のアプローチでは、生成文の多様性に欠けるという課題があります。本論文では多様な文章を生成するためにはテンプレートが重要であるという主張に基づき、テンプレートを学習可能なVAEベースの手法を提案します。提案手法では潜在変数の空間をテンプレート空間とコンテンツ空間に明示的に分離することによって、正確で多様な文生成が可能となります。また、table-textのペアデータだけではなくtableデータのないraw textデータを利用した半教師あり学習を行います。
Variational Template Machine for Data-to-Text Generationharmonylab
?
公開URL:https://openreview.net/forum?id=HkejNgBtPB
出典:Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, Lei Li : Variational Template Machine for Data-to-Text Generation, 8th International Conference on Learning Representations(ICLR2020), Addis Ababa, Ethiopia (2020)
概要:Table形式の構造化データから文章を生成するタスク(Data-to-Text)において、Variational Auto Encoder(VAE)ベースの手法Variational Template Machine(VTM)を提案する論文です。Encoder-Decoderモデルを用いた既存のアプローチでは、生成文の多様性に欠けるという課題があります。本論文では多様な文章を生成するためにはテンプレートが重要であるという主張に基づき、テンプレートを学習可能なVAEベースの手法を提案します。提案手法では潜在変数の空間をテンプレート空間とコンテンツ空間に明示的に分離することによって、正確で多様な文生成が可能となります。また、table-textのペアデータだけではなくtableデータのないraw textデータを利用した半教師あり学習を行います。