1) Concrete production will change significantly in the next 10 years to reduce carbon emissions and cement usage. Widespread use of supplementary cementitious materials like fly ash and slag will replace up to 30-40% of cement.
2) Mix designs will utilize local materials like crusher fines instead of scarce natural sands. Admixtures will be optimized to improve properties while reducing cement.
3) Specifications will shift from prescriptive standards to performance-based requirements, allowing producers to develop durable, sustainable mixes using local resources and advanced quality control. The number of producers may halve as the industry consolidates around high-tech operations.
2. The Task AheadIn 1981 my paper Concrete in 1991 to OWICS was easy to writeI even suggested it may be suitable for presentation in 1991 as Concrete in 2001 due to excessive conservatism in the industry and professionsToday it is much more difficult to look 10, or even 5, years into the future
3. A large variety of cement replacement materials and chemical admixtures are already in use;
4. Concrete can be self-consolidating or roller compacted, have a strength of more than 200MPa, be pumped to 600 metres height and claims are made of 100year durability.
5. Several organisations are either making or investigating concrete made with no Portland cement whatever;
6. Mix design is shifting from grading curves to nano-technology and natural sand is becoming unavailable in many areas. Technical and economic considerations are likely to be skewed by the imposition of carbon taxes and the award of green points, Yet there is still no general agreement on the best criterion of durability and some countries, including USA, are still using antique methods of specification.We need to start our considerations with cement
7. CementCement production is a major source of CO2But concrete is a desirable construction material,: having low embodied energy, high thermal mass, potentially high durabilityCement production is one of worlds major businesses so there is:Significant cost and inertia in any changeAnd the cement industry has a significant voice in government policy
8. CementSo the task confronting us is to minimise the usage of cement without reducing the production of concrete (and, if possible, with minimum disruption of the cement industry)Is Geopolymer a solution?
9. GeopolymerOne current producer has said that it is easy to make geopolymer and almost anyone can do it.However to make large quantities of GPC, with acceptable properties, at a competitive price, is a very different matter.
10. .Certainly potentially cost-competitive GPC is possible, and indeed is already in limited production, in Europe by Joseph Davidovits (the original discoverer of GPC) in Australia by Jannie van Deventer and Peter Duxon. However such GPC needs to reach full industrial scale to be fully cost-competitive-see Duxons appendix to written paper.
20. CementIt is clear that there will in the future be very little use of OPC as the sole cementing material. Professor Swami of Sheffield University, UK, has written: No concrete should be made without incorporating mineral admixtures or other pozzolanic cement replacement materials. Indeed, if one uses Portland cement alone in the cementitious system, then it should be (i.e. needs to be) justified
22. but need also to consider reduction through better mix design and QC and better admixtures.
23. A major problem in USA is the continued use of prescription specifications,
24. These provide zero motivation for the development of skill at mix design & QCP2PMeans Prescription to Performance as a specification basisI like to think of it as Purchaser to Producer as to responsibility for mix design and QCThis change is now imminent Prescription must involve a substantial additional margin which is wasteful and expensiveIt also involves more knowledge of both technology and material cost and availability than most specifiers haveAnd more responsibility than most are prepared to accept
25. Consequences of P2P for ProducersRecognition that concrete mixes should be designed and controlled by the concrete producer
28. It will mean that additional profit can be made by having a high class laboratory and top class personnel.
29. Many producers will be unable to compete so that, as in Australia for many years, Most RMC plants will be owned by a few major organisations
30. The number of independent producers in USA currently several hundred, can be expected to more than halve in the next few years!Consequences for QC organisationACI has concentrated on individual technician training and certification, but this also will have to change to the Australian model where each laboratory is responsible for training its technicians and NATA (National Assn of Testing Authorities) conducts periodic assessment visits covering:Equipment
34. -purchasers must be able to inspect and rely on a Producers QC recordsConsequences for QC organisationModern QC software automatically assesses the performance of each individual TO and producers labs will be keen to weed out / re-train anyone sub-standardProject supervisors need to ensure that sampling is at an appropriate stage (e.g. Not prior to addition of water)But in fact very few duplicate tests would be needed to reveal any dishonest practices if MMCQC software is in use.(MMCQC = Multigrade, Multivariable, Cusum QC)
35. DurabilityRepair and replacement of concrete is a huge problem Lack of durability is in fact a larger problem than initial construction and must be solved, but we have been slow to learn.
36. One approach, still persisting amongst ignorant specifiers, was to specify a minimum cement content.
37. Then it became apparent that, at a given W/C ratio, more water was more deleterious than less cement.
38. So at a given W/C ratio = a given strength, the concrete with the least cement content was the most durable i.e. Least permeable and lowest shrinkage.DurabilityBut strength, or W/C ratio, is now seen as by no means a sufficient guarantee of durability
39. A recent paper has shown that the introduction of ggbfs (ground, granulated, blast furnace slag) can have distinctly more effect on durability/permeability than a 25% reduction in W/C
40. So it is currently reasonable to specify concrete by strength (=W/C ratio) but to require a stated % of a nominated replacement material be used.DurabilityA definitive test for durability is urgently needed so that we can return to full specification by required properties.
46. Accepting such a criterion would allow the producer to determine which replacement material and/or admixture provides the best value in his area
47. And to have long term test data available to support his choiceUse of MagnesiaCurrent specifications limit the amount of magnesium in cement (due to delayed expansion tendency).
48. But several years ago, Harrison in Australia has shown that a large proportion of magnesia (magnesium oxide) gives a substantial improvement in durability and other properties by supplementing Portlandite with Brucite (Mg(OH)2) in otherwise normal concrete, while reducing CO2 generation in production and continuing to absorb it after placing.
49. Imperial College UK have started working on Novacem, entirely replacing Portland Cement with magnesia
50. (Imperial have just received extensive funding, unfortunately Harrison has not, and substantial capital is needed to progress to initial commercial production)Sand /crusher finesSupplies of suitable natural sand are becoming depleted - or made inaccessible by expanding housing suburbs
51. Nearly every Quarry is surrounded by discarded mountains or filled pits of dust.
52. It was assumed that such material will affect workability and increase water, and therefore cement, requirement to such an extent as to have a negative value.Sand /crusher finesIt aint necessarily so if produced by suitable crushers (especially a recent Japanese development), crusher fines can have equidimensional shape, rounded edges, and almost any desired grading.
56. The very microfines (Mix DesignObviously better mix design can save cement, improve durability and economy, and use available and local, rather than scarce and imported, resources.
57. For more than 30 years I have been designing cost competitive mixes, overseas and over the telephone, with no trial mixes and no more information than a sand grading and verbal description of coarse aggregate.
58. The likelihood that such a procedure would still yield an optimum mix, capable of competing with a higher tech assessment and investigation, is perhaps now remote.
59. Mix design must now consider ALL available materials and grading applies to material finer than cement as well as to sand and coarse aggregate, New Mix design RequirementsSkilled site labour is in shorter supply and more expensive than ever - and likely to continue to be even more so
60. Surface finish requirements are becoming more demanding and may require self-compacting concrete in special formwork
61. Such concrete can be obtained by oversanded and over-cemented ordinary concrete heavily dosed with admixture
62. It takes a lot more skill to use suitable fines to give the required cohesion without excessive cost.AdmixturesIt is not my intention to try to predict the future of admixtures
63. They are being used to reduce water content; improve workability; entrain air; accelerate or retard setting and strength development; and to reduce permeability, shrinkage or bleeding
64. It used to be that the purpose of admixtures was to save cost by reducing cement content, but the new high range water-reducers cost distinctly more than the cement they replace
65. So the cost justification was saving labour content
66. But they took hold faster in cheap labour countries,
68. There is even an admixture which produces improved properties while increasing water requirement but more thoroughly activating cementNew Types of ConcreteWe are used to striving for maximum impermeability in our concrete, but now there is an increasing requirement for pervious (=permeable) concrete paving (both insitu and with blocks)..Also RCC (Roller Compacted Concrete) is another way of reducing labour content
73. Conclusion 1So what will concrete be like in 10 years time?Certainly there will be endless variety
74. RMC will be produced under strict QC (by Producers) to meet limits of strength, workability, pumpability, durability, and shrinkage, often using crusher fines and always at least one cement replacement material.
78. Strengths of up to at least 200MPa will be available, but only in limited use.Conclusion 2The extent of change due to the GREENHOUSE GAS situation will depend more on scientists and politicians than on concrete technologists how much regulation and financial pressure/incentive will be provided?
79. Geopolymer concrete likely to be quite widely used but cannot amount to a substantial proportion of concrete in the near future (also note that it uses fly ash and ggbfc).
80. Fly ash, ggbfc, silica fume, rice hull ash, metakaolin and especially superfine calcium carbonate, will be widely used all concrete will contain at least one of these and there will be competition for available supplies of them.
81. Cement may be produced from CO2 and seawater (Calera in USA already working on a small scale demo plant)Conclusion 3What is certain is the demise of OLD FASHIONED CONCRETEThis is concrete which is: specified by minimum OPC content
82. required to use natural sand of specified grading
83. produced (and specified) by a company having no knowledge of concrete technology or QC and having no laboratory facilities or effective control system
84. Such concrete is often of low specified strength and high variability and likely to have a limited lifespan. Conclusion 4Not all trumpeted new developments will live up to the claims of their originators and it will be beyond the knowledge and ability of many specifiers, users, and even producers, to distinguish between hype and genuine advance. There will be a need for genuine experts to guide others in their choices, and even then, not all self-professed experts will be fully competent.
86. if you always require your selected expert to back his recommendation with actual test data from a recognized laboratory
87. and reference to at least one peer-reviewed article supporting that experts choice of testBest Wishes to You AllYour questions and discussion welcome if permitted by the ChairmanPlease note an extensive discussion on the future of geopolymer concrete by Peter Duxon as an appendix to the written paper