際際滷

際際滷Share a Scribd company logo
Dr gafar zen alabdeen salh (2011)
1
悋惷惡悋惡 悋悋愕惠惆悋
Fuzzy inference
悒惺惆悋惆:惆.惶悋忰 悋惺悋惡惆 慍 悴惺惘
悋忰悋愕惡 惺 悸 悋 悴悋惺悸惠悋悸
悋惺悋惠
惆悸
Dr gafar zen alabdeen salh (2011)
2
惠惺惘悋悋愕惠惆悋悋惷惡悋惡惡悖
惠忰惠惓惆悽悋惠惺悒
悽惘悴悋惠惡悋愕惠悽惆悋惴惘悸悋悧悋惠
悋惷惡悋惡悸.
Dr gafar zen alabdeen salh (2011)
3
悋惆悋惡愀 悋悋愕惠惆悋
Mamdani-style inference
Dr gafar zen alabdeen salh (2011)
4
悖愕惡悋悋愕惠惆悋悋惷惡悋惡悋悖惓惘悋愕惠悽惆悋悋
悋愕愀惘悸悋惆悋mamdani.惺悋
1975惡悋悖愕惠悋悵悋惡惘悋悋惆悋
professor Ebrahim Mamdani
悴悋惺悸惆悋忰惆悖悋惴悋惷惡悋惡悸惘悋惡悸
悽愀悛悸惡悽悋惘愃悋悸愀惡悧悸悋悋惺惆
悋惷惡悋惡悸悋惠忰惶惺悋愆愃惡愆惘
惶悋忰惡悽惡惘悸愀悸.
Dr gafar zen alabdeen salh (2011)
5
惺悋惷惡悋惡悸惠愃惘悋惠悋惆悽悋惠fuzzification
惠悋悋惺惆悸Rule evaluation
惠悴惺悽惘悴悋惠悋悋惺惆悸ruleaggregation of
consequents
悋愃悋悄悋惷惡悋惡悸defuzzification
惠悵惺悸悋悋愕惠惆悋惺愀悋惆悋惡惺惘悖悽愀悋惠:
悸惘惠 愆惺惡惺惷惡惺惷悋悒悋愕惘惆愆悸惡愕愀悸惆悽
悽惘悴悋忰惆惠愆惓悋惓悋惺惆:
Dr gafar zen alabdeen salh (2011)
6
Rule: 1 Rule: 1
IF x is A3 IF project_funding is adequate
OR y is B1 OR project_staffing is small
THEN z is C1 THEN risk is low
Rule: 2 Rule: 2
IF x is A2 IF project_funding is marginal
AND y is B2 AND project_staffing is large
THEN z is C2 THEN risk is normal
Rule: 3 Rule: 3
IF x is A1 IF project_funding is inadequate
THEN z is C3 THEN risk is high
Dr gafar zen alabdeen salh (2011)
7
忰惓xyz惠愃惘悋惠愃悸(project_funding
project_staffingrisk惺悋惠悋)A1,A2,A3
愃悸(adequatemarginal
inadequate惺悋惠悋)惠忰惆惆惡悋愕愀悸悧悋惠惷惡悋惡悸惺
惺悋悋忰悋惆惓悸X(project_funding)B1,B2
悋惠悋愃惠悋(smallarge惺悋惠悋)惠忰惆惆悋
惡悋愕愀悸悧悋惠惺惺悋悋忰悋惆惓悸Y
(project_staffing)C1,C2,C3愃悸
(lownormalhigh惺悋惠悋)惠忰惆惆惡悋愕愀悸悧悋惠
惷惡悋惡悸惺惺悋悋忰悋惆惓悸Z(risk)
悋悖悋悽愀悸-fuzzification
Dr gafar zen alabdeen salh (2011)
8
悋悽悵悋惆悽悋惠悋悋惷忰悸x1,x2(project funding and
project staffing)惠忰惆惆悋惆惘悴悸悋惠惠惠惡悋悵悋惆悽悋惠悒
悋悧悋惠悋惷惡悋惡悸悋悋愕惡悸
Crisp Input
0.1
0.7
1
0
y1
B1 B2
Y
Crisp Input
0.2
0.5
1
0
A1 A2 A3
x1
x1 X
(x = A1) = 0.5
(x = A2) = 0.2
(y = B1) = 0.1
(y = B2) = 0.7
惠悋惡惺-悋悖悋悽愀悸-
Dr gafar zen alabdeen salh (2011)
9
惆悋悧悋惠悋惆悽悋惠悋悋惷忰悸悸惺惆惆悸忰惆惆悸惡惺悋悋忰悋惆惓悸.
忰悋惠悋惠x1,x2忰惆惆悸惡惺悋悋忰悋惆惓悋惠x,y惺
悋惠悋.惠忰惆惆惆惘悴悸惺悋悋忰悋惆惓悸惺愀惘悒忰悋悋悽惡惘
悋惡愆惘.惺愕惡悋惓悋悒悵悋悋忰惠悴悋悖惆惘愕悋悽悋愀惘悋愆悸
惠愀惘愆惘惺惷惡悋惡悋悖愀惡悋悽惡惘悖惺愀悋悖惺惆悋惆
惠惠惘悋忰0%悒100%惠惓惠悋愆惘惺悖惘悋惆悋愆惘惺
惺悋惠悋.惡悋惠悖悽惘愀惡悋悽惡惘悖悴惡惺悖
惆惠愆惘惺悖惘悋惆愆惘惺悋悋惺悋.惡悋愀惡惺
惠愕惠悽惆惴惷惡悋惡悸悽惠悸惆悽悋惠悋惷忰悸悽惠悸惠惺悸.惡悋
悋愕惡惺惷悋惆悽悋惠惡悋愆惘悸(悋愀悋慍...悋悽).
Dr gafar zen alabdeen salh (2011)
10
惡惺惆悋忰惶惺悋惆悽悋惠悋悋惷忰悸x1,y1惠惠忰悋悒
悋惷惡悋惡悸悋惡悋悧悋惠悋惷惡悋惡悸悋愃悸悋悋愕惡悸
惠悋惴惘悋惆悽悋惠悋悋惷忰悸x1(惠悋愆惘惺悋悵惷惺
悋悽惡惘惠惆惘悋35%)惆悋悋惺惷悸A1,A2(悋
inadequatemarginal惺悋惠悋)惆惘悴悋惠0.5 ,0.2
惺悋惠悋
惠悋惴惘悋惆悽悋惠悋悋惷忰悸Y1(悖惘悋惆悋愆惘惺悋惠惆惘悋
悋悽惡惘惡悋悋60%)惆悋惠悋悋惺惷悋悄B1,B2(悋small,large
惺悋惠悋)惆惘悴惠0.10.7惺悋惠悋.
惡悵悋愀惘悸惠惠忰悋惆悽悋惠悋悋惷惡悋惡悸惆悋
悋惺惷悸悋惠惠愕惠悽惆悋悋悋惺惆悋惷惡悋惡悸
惠悋惡惺-悋悖 悋悽愀悸
悋惓悋悸 悋悽愀悸:悋悋惺惆悸 惠Rule
evaluation
Dr gafar zen alabdeen salh (2011)
11
悋悽愀悸悋惓悋悸悋悽悵悋惆悽悋惠悋惶惘悸悋惷惡悋惡悸:
 (x=A1) = 0.5, (x=A2) = 0.2,
 (y=B1) = 0.1 and (y=B 2) = 0.7
惠愀惡悋惺悋惺悋惶惘悋愆惘愀悸悋惺惆悋惷惡悋惡悸.悒悵悋悋悋惺惆悸
惷惡悋惡悸惺悸惺悋惶惘愆惘愀悸惠惺惆惆悸愕惠悽惆悋悗惓惘悋惷惡悋惡
and悋or悋忰惶惺惺惆惆悋忰惆惓惠悴悸惠
悋惺惶惘悋愆惘愀.愀惡悵悋悋惺惆惆(悸悋忰悸)惡惺惆悵惺
惆悋悸惺惷悋惠悴悸悋愀悸
惠悋惡惺-悋惓悋悸 悋悽愀悸
Dr gafar zen alabdeen salh (2011)
12
惠悋惶悋悋惺悋惶惘悋愆惘愀悸悋惺惆悸悒悋愕惠悽惆悋悗惓惘
悋惷惡悋惡or惠惆悋愕惠悽惆惴悋悋悽惡惘悸悋惷惡悋惡惺悸
悋悋惠忰悋惆unin悋惷惡悋惡悸悋悋愕悸悋惡悋愆悋惠悋:
 rule1 :
A B(x) = max [A(x), B(x)]
 悒悋 悋惺惆悸 悋愆惘愀悸 悋惺悋惶惘 惠忰惆 惠 惡悋惓惺悸 愀惡
and悖惷 悋惠悋 悋愆  悖惡  惠悋愀惺 悋惷惡悋惡悸悋
 rule2:
A B(x) = min [A(x), B(x)]
Mamdani-style rule evaluation
Dr gafar zen alabdeen salh (2011)
13
A3
1
0 X
1
y10 Y
0.0
x1 0
0.1
C1
1
C2
Z
1
0 X
0.2
0
0.2
C1
1
C2
Z
A2
x1
Rule 3: IF x is A1 (0.5)
A1
1
0 X 0
1
Zx1
THEN
C1 C2
1
y1
B2
0 Y
0.7
B1
0.1
C3
C3
C30.5 0.5
OR
(max)
AND
(min)
OR THENRule 1: IF x is A3 (0.0)
AND THENRule 2: IF x is A2 (0.2)
y is B1 (0.1) zis C1 (0.1)
y is B2 (0.7) zis C2 (0.2)
zis C3 (0.5)
Dr gafar zen alabdeen salh (2011)
14
悋悋惠愀惡惠悴悸惠悋惺惶惘悋愆惘愀惺悋惆悋悸悋惺惷
惠悴悸悋愀悸.惡悋惠悋悽惘惠悋惆悋悸悋惺惷惠悴悸
悋愆惘愀悸惶惶悸clipped悋惠愃惘悸悋悋愕scaled
愕惠悸悋忰悸惺惶惘悋愆惘愀悋惺惆悸
惺 悋悵 悋惡悋惶惶悋悋悋愕 惠愃惘
Dr gafar zen alabdeen salh (2011)
15
悋愀惘悸悋悋惓惘愆惺悋悋惘惠惡悋愀悋惠悴悸悋愀悸悋惺惆悸惡悸
悋忰悸惺惶惘悋愆惘愀悋惺惆悸愀惺悋惆悋悸悋惺惷惠悴悸
悋愆惘愀悸惡惡愕悋愀悸惺惆愕惠忰悸悋惺惶惘悋愆惘愀惠愕
悵悋愀惘悸惶悋clipping悋悋惆悋惘惠惡悋愀correlation
minimum.惴惘悋悋悸惆悋悸悋惺惷惆愀惺惠惆悋悧悸
悋惷惡悋惡悸悋惶惶悸惡惺惷悋惺悋惠悋.悋悋悋悋惶悋慍悋
惷悋悋愆惘悋惷悋惠悋惠惺惆悋悋愕惘惺惠悴愕愀忰
悽惘悴悋惠悴惺悸悋愕悋愃悋悄悋惷悋惡悸.
Dr gafar zen alabdeen salh (2011)
16
惡悋惓悋惶悋愀惘悸悋悋惓惘悋愕惠悽惆悋悋惆惠愃惘悋悋愕
scaling愀惘悸悋惷悋忰惠悋惴惡悋愆悋悋惶悧悸悋惷惡悋惡悸
.惠惷惡愀惆悋悸悋惺惷悋悋惶悸惠悴悸悋愀悸悋惺惆悸惺愀惘
惷惘惡惆惘悴悋惠悋惺惷悋悧悋悸悋忰悸惺惶惘悋愆惘愀
悋惺惆悸.悋惠悵悋愀惘悸悋惠惠惆惺悋惠悋
惡惶悸惺悋悸惆悸悴惆悋惴悋悽惡惘悸悋惷惡悋惡悸.惡悋愆
悋惠悋惆悋悋惺惷悸悋惶惶悸惠愃惘悋悋愕
Clipped and scaled membership
functions
Dr gafar zen alabdeen salh (2011)
17
1.0
0.0
0.2
Z Z
C2
1.0
0.0
0.2
C2
Degree of
Membership
Degree of
Membership
悋惓悋惓悸 悋悽愀悸:悋悋惺惆悸 悽惘悴悋惠 惠悴惺
Aggregation of the rule outputs
Dr gafar zen alabdeen salh (2011)
18
惠悴惺惺悸惠忰惆悋悽惘悴悋惠悋悋惺惆.惡悋惠
悋悽惘悋悋悋悽悵惆悋悋悋惺惷悋悄悋惠悋悧悴悋愀悸悋惺惆悋惠
愕惡惶悋悋惠愃惘悋愕悋惆悴悋悧悸惷惡悋惡悸悋忰惆悸.
悵惠惆悽悋惠惺悸悋惠悴惺悋悧悸惡惆悋悋悋惺惷悋悄悋惠
忰惆惓惶悋惠愃惘悋愕惠悋悧悴悋悋愀悸惠悋悽惘悴悋惠
悧悸惷惡悋惡悸惠愃惘悽惘悴悋惠.惡悋愆悋惠悋惠
惠悴惺悋悽惘悴悋惠悋惺惆悸悧悸惷惡悋惡悸悋忰惆悸悽惘悴悋惠
悋惷惡悋惡悸悋愆悋悸
Aggregation of the rule outputs
Dr gafar zen alabdeen salh (2011)
19
0
0.1
1
C1
zis C1 (0.1)
C2
0
0.2
1
zis C2 (0.2)
0
0.5
1
zis C3 (0.5)
ZZZ
0.2
Z0

C3
0.5
0.1
悋惘悋惡惺悸 悋悽愀悸:悋惷惡悋惡悸 悒愃悋悄
Dr gafar zen alabdeen salh (2011)
20
惠悋悽愀悸悋悖悽惘悸惺悸悋悋愕惠惆悋悋惷惡悋惡
悒愃悋悄悋惷惡悋惡悸.惠愕悋惺惆悋悋惷惡悋惡悸惠
悋悋惺惆悒悋悖悋悽惘悴悋惠悋悋悧悸惴悋悋惷惡悋惡
悴惡悖惠惘悋悋惷忰悋.惠悋惆悽悋惠
惺悸悋愃悋悄悋惷惡悋惡悸悋悧悸悋惷惡悋惡悸悽惘悴悋惠
悋悴惺悸悽惘悴悋惠悋惘悋忰惆
悋悴惺悸 悋惷惡悋惡悸 悋悧悸 悒愃悋悄  
Dr gafar zen alabdeen salh (2011)
21
惠悴惆惺惆悸愀惘悋愃悋悄悋惷惡悋惡悸惆惠悋愀惘悸悋悖惓惘愆惺悋
悖愕惡悋惘慍悋惠愕愀centroid.悴惆悋愀悸悋惠惺惺惆悋
悋悽愀悋惘悋愕悋悧悸悋悴惺悸悋惠惠惠愕悋惠.惘悋惷悋
悋惠惺惡惘惺惘慍悋惓centre of gravity (COG)





 b
a
A
b
a
A
COG
x xdx
x dx
Dr gafar zen alabdeen salh (2011)
22
悵悋愀惘悸惠悴惆愀悸惠惓惘慍悋惓悧悸悋惷惡悋惡悸A惺
悋惠惘悸ab
1.0
0.0
0.2
0.4
0.6
0.8
160 170 180 190 200
a b
210
A
150
X
Dr gafar zen alabdeen salh (2011)
23
惴惘悋忰愕惡COG惺悋悋愀悋惠惶悸惆悋悸悋惺惷
悽惘悴悋惠悋悴惺悸悋悋悋惺悋悋忰惶惺惠惆惘
惺惺愀惘悋忰愕悋惡惺悋悋愀悋惡悋愆
悋愕悋惡悸悵悋忰悋悸惠愕惠悽惆悋惶愃悸悋惠悋悸:







b
aX
X
b
aX
XX
COG
)(
)(
Centre of gravity (COG):
Dr gafar zen alabdeen salh (2011)
24
4.67
5.05.05.05.02.02.02.02.01.01.01.0
5.0)100908070(2.0)60504030(1.0)20100(


器器器
COG
1.0
0.0
0.2
0.4
0.6
0.8
0 20 30 40 5010 70 80 90 10060
Z
Degreeof
Membership
67.4
Dr gafar zen alabdeen salh (2011)
25
悋悋悸

More Related Content

Fuzzy inference

  • 1. Dr gafar zen alabdeen salh (2011) 1 悋惷惡悋惡 悋悋愕惠惆悋 Fuzzy inference 悒惺惆悋惆:惆.惶悋忰 悋惺悋惡惆 慍 悴惺惘 悋忰悋愕惡 惺 悸 悋 悴悋惺悸惠悋悸 悋惺悋惠
  • 2. 惆悸 Dr gafar zen alabdeen salh (2011) 2 惠惺惘悋悋愕惠惆悋悋惷惡悋惡惡悖 惠忰惠惓惆悽悋惠惺悒 悽惘悴悋惠惡悋愕惠悽惆悋惴惘悸悋悧悋惠 悋惷惡悋惡悸.
  • 3. Dr gafar zen alabdeen salh (2011) 3 悋惆悋惡愀 悋悋愕惠惆悋 Mamdani-style inference
  • 4. Dr gafar zen alabdeen salh (2011) 4 悖愕惡悋悋愕惠惆悋悋惷惡悋惡悋悖惓惘悋愕惠悽惆悋悋 悋愕愀惘悸悋惆悋mamdani.惺悋 1975惡悋悖愕惠悋悵悋惡惘悋悋惆悋 professor Ebrahim Mamdani 悴悋惺悸惆悋忰惆悖悋惴悋惷惡悋惡悸惘悋惡悸 悽愀悛悸惡悽悋惘愃悋悸愀惡悧悸悋悋惺惆 悋惷惡悋惡悸悋惠忰惶惺悋愆愃惡愆惘 惶悋忰惡悽惡惘悸愀悸.
  • 5. Dr gafar zen alabdeen salh (2011) 5 惺悋惷惡悋惡悸惠愃惘悋惠悋惆悽悋惠fuzzification 惠悋悋惺惆悸Rule evaluation 惠悴惺悽惘悴悋惠悋悋惺惆悸ruleaggregation of consequents 悋愃悋悄悋惷惡悋惡悸defuzzification 惠悵惺悸悋悋愕惠惆悋惺愀悋惆悋惡惺惘悖悽愀悋惠:
  • 6. 悸惘惠 愆惺惡惺惷惡惺惷悋悒悋愕惘惆愆悸惡愕愀悸惆悽 悽惘悴悋忰惆惠愆惓悋惓悋惺惆: Dr gafar zen alabdeen salh (2011) 6 Rule: 1 Rule: 1 IF x is A3 IF project_funding is adequate OR y is B1 OR project_staffing is small THEN z is C1 THEN risk is low Rule: 2 Rule: 2 IF x is A2 IF project_funding is marginal AND y is B2 AND project_staffing is large THEN z is C2 THEN risk is normal Rule: 3 Rule: 3 IF x is A1 IF project_funding is inadequate THEN z is C3 THEN risk is high
  • 7. Dr gafar zen alabdeen salh (2011) 7 忰惓xyz惠愃惘悋惠愃悸(project_funding project_staffingrisk惺悋惠悋)A1,A2,A3 愃悸(adequatemarginal inadequate惺悋惠悋)惠忰惆惆惡悋愕愀悸悧悋惠惷惡悋惡悸惺 惺悋悋忰悋惆惓悸X(project_funding)B1,B2 悋惠悋愃惠悋(smallarge惺悋惠悋)惠忰惆惆悋 惡悋愕愀悸悧悋惠惺惺悋悋忰悋惆惓悸Y (project_staffing)C1,C2,C3愃悸 (lownormalhigh惺悋惠悋)惠忰惆惆惡悋愕愀悸悧悋惠 惷惡悋惡悸惺惺悋悋忰悋惆惓悸Z(risk)
  • 8. 悋悖悋悽愀悸-fuzzification Dr gafar zen alabdeen salh (2011) 8 悋悽悵悋惆悽悋惠悋悋惷忰悸x1,x2(project funding and project staffing)惠忰惆惆悋惆惘悴悸悋惠惠惠惡悋悵悋惆悽悋惠悒 悋悧悋惠悋惷惡悋惡悸悋悋愕惡悸 Crisp Input 0.1 0.7 1 0 y1 B1 B2 Y Crisp Input 0.2 0.5 1 0 A1 A2 A3 x1 x1 X (x = A1) = 0.5 (x = A2) = 0.2 (y = B1) = 0.1 (y = B2) = 0.7
  • 9. 惠悋惡惺-悋悖悋悽愀悸- Dr gafar zen alabdeen salh (2011) 9 惆悋悧悋惠悋惆悽悋惠悋悋惷忰悸悸惺惆惆悸忰惆惆悸惡惺悋悋忰悋惆惓悸. 忰悋惠悋惠x1,x2忰惆惆悸惡惺悋悋忰悋惆惓悋惠x,y惺 悋惠悋.惠忰惆惆惆惘悴悸惺悋悋忰悋惆惓悸惺愀惘悒忰悋悋悽惡惘 悋惡愆惘.惺愕惡悋惓悋悒悵悋悋忰惠悴悋悖惆惘愕悋悽悋愀惘悋愆悸 惠愀惘愆惘惺惷惡悋惡悋悖愀惡悋悽惡惘悖惺愀悋悖惺惆悋惆 惠惠惘悋忰0%悒100%惠惓惠悋愆惘惺悖惘悋惆悋愆惘惺 惺悋惠悋.惡悋惠悖悽惘愀惡悋悽惡惘悖悴惡惺悖 惆惠愆惘惺悖惘悋惆愆惘惺悋悋惺悋.惡悋愀惡惺 惠愕惠悽惆惴惷惡悋惡悸悽惠悸惆悽悋惠悋惷忰悸悽惠悸惠惺悸.惡悋 悋愕惡惺惷悋惆悽悋惠惡悋愆惘悸(悋愀悋慍...悋悽).
  • 10. Dr gafar zen alabdeen salh (2011) 10 惡惺惆悋忰惶惺悋惆悽悋惠悋悋惷忰悸x1,y1惠惠忰悋悒 悋惷惡悋惡悸悋惡悋悧悋惠悋惷惡悋惡悸悋愃悸悋悋愕惡悸 惠悋惴惘悋惆悽悋惠悋悋惷忰悸x1(惠悋愆惘惺悋悵惷惺 悋悽惡惘惠惆惘悋35%)惆悋悋惺惷悸A1,A2(悋 inadequatemarginal惺悋惠悋)惆惘悴悋惠0.5 ,0.2 惺悋惠悋 惠悋惴惘悋惆悽悋惠悋悋惷忰悸Y1(悖惘悋惆悋愆惘惺悋惠惆惘悋 悋悽惡惘惡悋悋60%)惆悋惠悋悋惺惷悋悄B1,B2(悋small,large 惺悋惠悋)惆惘悴惠0.10.7惺悋惠悋. 惡悵悋愀惘悸惠惠忰悋惆悽悋惠悋悋惷惡悋惡悸惆悋 悋惺惷悸悋惠惠愕惠悽惆悋悋悋惺惆悋惷惡悋惡悸 惠悋惡惺-悋悖 悋悽愀悸
  • 11. 悋惓悋悸 悋悽愀悸:悋悋惺惆悸 惠Rule evaluation Dr gafar zen alabdeen salh (2011) 11 悋悽愀悸悋惓悋悸悋悽悵悋惆悽悋惠悋惶惘悸悋惷惡悋惡悸: (x=A1) = 0.5, (x=A2) = 0.2, (y=B1) = 0.1 and (y=B 2) = 0.7 惠愀惡悋惺悋惺悋惶惘悋愆惘愀悸悋惺惆悋惷惡悋惡悸.悒悵悋悋悋惺惆悸 惷惡悋惡悸惺悸惺悋惶惘愆惘愀悸惠惺惆惆悸愕惠悽惆悋悗惓惘悋惷惡悋惡 and悋or悋忰惶惺惺惆惆悋忰惆惓惠悴悸惠 悋惺惶惘悋愆惘愀.愀惡悵悋悋惺惆惆(悸悋忰悸)惡惺惆悵惺 惆悋悸惺惷悋惠悴悸悋愀悸
  • 12. 惠悋惡惺-悋惓悋悸 悋悽愀悸 Dr gafar zen alabdeen salh (2011) 12 惠悋惶悋悋惺悋惶惘悋愆惘愀悸悋惺惆悸悒悋愕惠悽惆悋悗惓惘 悋惷惡悋惡or惠惆悋愕惠悽惆惴悋悋悽惡惘悸悋惷惡悋惡惺悸 悋悋惠忰悋惆unin悋惷惡悋惡悸悋悋愕悸悋惡悋愆悋惠悋: rule1 : A B(x) = max [A(x), B(x)] 悒悋 悋惺惆悸 悋愆惘愀悸 悋惺悋惶惘 惠忰惆 惠 惡悋惓惺悸 愀惡 and悖惷 悋惠悋 悋愆 悖惡 惠悋愀惺 悋惷惡悋惡悸悋 rule2: A B(x) = min [A(x), B(x)]
  • 13. Mamdani-style rule evaluation Dr gafar zen alabdeen salh (2011) 13 A3 1 0 X 1 y10 Y 0.0 x1 0 0.1 C1 1 C2 Z 1 0 X 0.2 0 0.2 C1 1 C2 Z A2 x1 Rule 3: IF x is A1 (0.5) A1 1 0 X 0 1 Zx1 THEN C1 C2 1 y1 B2 0 Y 0.7 B1 0.1 C3 C3 C30.5 0.5 OR (max) AND (min) OR THENRule 1: IF x is A3 (0.0) AND THENRule 2: IF x is A2 (0.2) y is B1 (0.1) zis C1 (0.1) y is B2 (0.7) zis C2 (0.2) zis C3 (0.5)
  • 14. Dr gafar zen alabdeen salh (2011) 14 悋悋惠愀惡惠悴悸惠悋惺惶惘悋愆惘愀惺悋惆悋悸悋惺惷 惠悴悸悋愀悸.惡悋惠悋悽惘惠悋惆悋悸悋惺惷惠悴悸 悋愆惘愀悸惶惶悸clipped悋惠愃惘悸悋悋愕scaled 愕惠悸悋忰悸惺惶惘悋愆惘愀悋惺惆悸
  • 15. 惺 悋悵 悋惡悋惶惶悋悋悋愕 惠愃惘 Dr gafar zen alabdeen salh (2011) 15 悋愀惘悸悋悋惓惘愆惺悋悋惘惠惡悋愀悋惠悴悸悋愀悸悋惺惆悸惡悸 悋忰悸惺惶惘悋愆惘愀悋惺惆悸愀惺悋惆悋悸悋惺惷惠悴悸 悋愆惘愀悸惡惡愕悋愀悸惺惆愕惠忰悸悋惺惶惘悋愆惘愀惠愕 悵悋愀惘悸惶悋clipping悋悋惆悋惘惠惡悋愀correlation minimum.惴惘悋悋悸惆悋悸悋惺惷惆愀惺惠惆悋悧悸 悋惷惡悋惡悸悋惶惶悸惡惺惷悋惺悋惠悋.悋悋悋悋惶悋慍悋 惷悋悋愆惘悋惷悋惠悋惠惺惆悋悋愕惘惺惠悴愕愀忰 悽惘悴悋惠悴惺悸悋愕悋愃悋悄悋惷悋惡悸.
  • 16. Dr gafar zen alabdeen salh (2011) 16 惡悋惓悋惶悋愀惘悸悋悋惓惘悋愕惠悽惆悋悋惆惠愃惘悋悋愕 scaling愀惘悸悋惷悋忰惠悋惴惡悋愆悋悋惶悧悸悋惷惡悋惡悸 .惠惷惡愀惆悋悸悋惺惷悋悋惶悸惠悴悸悋愀悸悋惺惆悸惺愀惘 惷惘惡惆惘悴悋惠悋惺惷悋悧悋悸悋忰悸惺惶惘悋愆惘愀 悋惺惆悸.悋惠悵悋愀惘悸悋惠惠惆惺悋惠悋 惡惶悸惺悋悸惆悸悴惆悋惴悋悽惡惘悸悋惷惡悋惡悸.惡悋愆 悋惠悋惆悋悋惺惷悸悋惶惶悸惠愃惘悋悋愕
  • 17. Clipped and scaled membership functions Dr gafar zen alabdeen salh (2011) 17 1.0 0.0 0.2 Z Z C2 1.0 0.0 0.2 C2 Degree of Membership Degree of Membership
  • 18. 悋惓悋惓悸 悋悽愀悸:悋悋惺惆悸 悽惘悴悋惠 惠悴惺 Aggregation of the rule outputs Dr gafar zen alabdeen salh (2011) 18 惠悴惺惺悸惠忰惆悋悽惘悴悋惠悋悋惺惆.惡悋惠 悋悽惘悋悋悋悽悵惆悋悋悋惺惷悋悄悋惠悋悧悴悋愀悸悋惺惆悋惠 愕惡惶悋悋惠愃惘悋愕悋惆悴悋悧悸惷惡悋惡悸悋忰惆悸. 悵惠惆悽悋惠惺悸悋惠悴惺悋悧悸惡惆悋悋悋惺惷悋悄悋惠 忰惆惓惶悋惠愃惘悋愕惠悋悧悴悋悋愀悸惠悋悽惘悴悋惠 悧悸惷惡悋惡悸惠愃惘悽惘悴悋惠.惡悋愆悋惠悋惠 惠悴惺悋悽惘悴悋惠悋惺惆悸悧悸惷惡悋惡悸悋忰惆悸悽惘悴悋惠 悋惷惡悋惡悸悋愆悋悸
  • 19. Aggregation of the rule outputs Dr gafar zen alabdeen salh (2011) 19 0 0.1 1 C1 zis C1 (0.1) C2 0 0.2 1 zis C2 (0.2) 0 0.5 1 zis C3 (0.5) ZZZ 0.2 Z0 C3 0.5 0.1
  • 20. 悋惘悋惡惺悸 悋悽愀悸:悋惷惡悋惡悸 悒愃悋悄 Dr gafar zen alabdeen salh (2011) 20 惠悋悽愀悸悋悖悽惘悸惺悸悋悋愕惠惆悋悋惷惡悋惡 悒愃悋悄悋惷惡悋惡悸.惠愕悋惺惆悋悋惷惡悋惡悸惠 悋悋惺惆悒悋悖悋悽惘悴悋惠悋悋悧悸惴悋悋惷惡悋惡 悴惡悖惠惘悋悋惷忰悋.惠悋惆悽悋惠 惺悸悋愃悋悄悋惷惡悋惡悸悋悧悸悋惷惡悋惡悸悽惘悴悋惠 悋悴惺悸悽惘悴悋惠悋惘悋忰惆
  • 21. 悋悴惺悸 悋惷惡悋惡悸 悋悧悸 悒愃悋悄 Dr gafar zen alabdeen salh (2011) 21 惠悴惆惺惆悸愀惘悋愃悋悄悋惷惡悋惡悸惆惠悋愀惘悸悋悖惓惘愆惺悋 悖愕惡悋惘慍悋惠愕愀centroid.悴惆悋愀悸悋惠惺惺惆悋 悋悽愀悋惘悋愕悋悧悸悋悴惺悸悋惠惠惠愕悋惠.惘悋惷悋 悋惠惺惡惘惺惘慍悋惓centre of gravity (COG) b a A b a A COG x xdx x dx
  • 22. Dr gafar zen alabdeen salh (2011) 22 悵悋愀惘悸惠悴惆愀悸惠惓惘慍悋惓悧悸悋惷惡悋惡悸A惺 悋惠惘悸ab 1.0 0.0 0.2 0.4 0.6 0.8 160 170 180 190 200 a b 210 A 150 X
  • 23. Dr gafar zen alabdeen salh (2011) 23 惴惘悋忰愕惡COG惺悋悋愀悋惠惶悸惆悋悸悋惺惷 悽惘悴悋惠悋悴惺悸悋悋悋惺悋悋忰惶惺惠惆惘 惺惺愀惘悋忰愕悋惡惺悋悋愀悋惡悋愆 悋愕悋惡悸悵悋忰悋悸惠愕惠悽惆悋惶愃悸悋惠悋悸: b aX X b aX XX COG )( )(
  • 24. Centre of gravity (COG): Dr gafar zen alabdeen salh (2011) 24 4.67 5.05.05.05.02.02.02.02.01.01.01.0 5.0)100908070(2.0)60504030(1.0)20100( 器器器 COG 1.0 0.0 0.2 0.4 0.6 0.8 0 20 30 40 5010 70 80 90 10060 Z Degreeof Membership 67.4
  • 25. Dr gafar zen alabdeen salh (2011) 25 悋悋悸

Editor's Notes