際際滷

際際滷Share a Scribd company logo
Thu畉t to叩n Gen Tr畉n Cao Tr動畛ng Khoa CNTT-H畛c vi畛n KTQS
N畛i dung Thu畉t to叩n Gen C叩c thnh ph畉n c董 b畉n c畛a thu畉t to叩n gen C叩c khuy畉n c叩o khi s畛 d畛ng thu畉t to叩n gen 働u v nh動畛c i畛m c畛a thu畉t to叩n gen Demo ch動董ng tr狸nh
Thu畉t to叩n Gen (GAs) GAs (John Holland) m担 ph畛ng ti畉n h坦a t畛 nhi棚n (Darwinian Evolution) 畛 m畛c gen s畛 d畛ng t動 t動畛ng c畛a  survival of the fittest M畛t c叩 th畉   ( chromosome ) m担 t畉 m畛t l畛i gi畉i 畛ng vi棚n c畛a bi to叩n. M畛t t畉p c叩c c叩 th畛 "alive, g畛i l qu畉n th畛 ( population)  動畛c ti畉n h坦a t畛 th畉 h畛 ny t畛i th畉 h畛 kh叩c ph畛 thu畛c vo s畛 th鱈ch nghi c畛a c叩c c叩 th畛 Hope: Th畉 h畛 sinh ra  s畉 ch畛a l畛i gi畉i c畛a bi to叩n
Sinh ra th畉 h畛 kh畛i t畉o v畛i qu畉n th畛 P(0), ch畛 s畛  i   ch畛 ra th畉 h畛 th畛 i L畉p cho 畉n khi qu畉n th畛 h畛i t畛 or ti棚u chu畉n k畉t th炭c 畉t 動畛c  叩nh gi叩 畛 th鱈ch nghi c畛a m畛i c叩 th畛 trong P( i ) L畛a ch畛n c叩c cha t畛 P( i ) d畛a tr棚n 畛 th鱈ch nghi c畛a ch炭ng trong P( i ) p d畛ng c叩c to叩n t畛 Gen (crossover, mutation) t畛 c叩c cha 達 ch畛n 畛 sinh ra c叩c con ( offspring) 畉t 動畛c th畉 h畛 ti畉p theo P( i  + 1) t畛 c叩c con v c叩c c叩 th畛 畛 th畉 h畛 P( i ) Thu畉t to叩n Gen
Procedure GA begin  t := 0 ; initialize P(t) ; evaluate P(t) ; while (not termination-condition) do begin t := t + 1 ; select P(t) from P(t-1) ; alter P(t) ; evaluate P(t) ; end end C畉u tr炭c c畛a GA Step 0   : Initialization Step 1   : Selection Step 2 : Crossover Step 3 : Mutation Step 5   : Termination  Test Step   6   : End Step 4   : Evaluation
M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
Bi to叩n Knapsack 01 B畉n chu畉n b畛 i picnic  V b畉n c坦 m畛t s畛 c叩c v畉t m b畉n c坦 th畛 c畉m theo  M畛i v畉t c坦 m畛t weight v m畛t benefit hay value. C坦 m畛t c叩i t炭i gi畛i h畉n weight b畉n c坦 th畉 c畉m theo M畛i v畉t ch畛 動畛c ch畛n t畛i a 1 l畉n  B畉n mu畛n c畉m c叩c v畉t mang theo v畛i max benefit M担 t畉 bi to叩n:
Bi to叩n Knapsack 01 畛 v畉t:  1  2  3  4  5  6  7 Gi叩 tr畛: 5  8  3  2  7  9  4 T.l動畛ng: 7  8  4 10  4  6  4 Kh畛i l動畛ng t畛i a c坦 th畛 mang l 22 pounds  X畉p 畛 v畉t 畛 c坦 gi叩 tr畛 l畛n nh畉t Example:
Problem:   M畛t ng動畛i b叩n hng c畉n gh辿 qua t畉t c畉 c叩c thnh ph畛, m畛i thnh ph畛 m畛t l畉n   v tr畛 l畉i thnh ph畛 ban 畉u .  C坦 chi ph鱈 di chuy畛n gi畛a t畉t c畉 c叩c thnh ph畛. T狸m hnh tr狸nh c坦 t畛ng chi ph鱈 nh畛 nh畉t Bi to叩n TSP 5 1 3 2 4 14 12 11 23 8 10 6
M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
Encoding   M達 h坦a nh畛 ph但n (Binary encoding)  l ki畛u th担ng d畛ng nh畉t b畛i v狸: nghi棚n c畛u 畉u ti棚n v畛 thu畉t to叩n Gen s畛 d畛ng ki畛u m達 h坦a ny v b畛i v狸 n坦 董n gi畉n  Trong m達 h坦a nh畛 ph但n, m畛i nhi畛m s畉c th畛 l chu畛i  bits  -  0  or  1 .  Chromosome A  101100101100101011100101 Chromosome B  111111100000110000011111  M達 h坦a nh畛 ph但n 動a ra nhi畛u kh畉 nng c畛a nhi畛m s畉c th畛 v畛i m畛t s畛 l動畛ng nh畛 c叩c alen C叩c m達 h坦a ny th動畛ng kh担ng t畛 nhi棚n cho nhi畛u bi to叩n v th畛nh tho畉ng sai sau khi th畛 hi畛n c叩c ph辿p to叩n crossover and/or mutation.
Bi to叩n Knapsack 01 Encoding:  0 = not exist, 1 = exist in the Knapsack Chromosome: 1010110 => Items taken: 1, 3 , 5, 6. Generate random population of  n  chromosomes: 0101010 1100100 0100011 7 6 5 4 3 2 1 Item. 0 1 1 0 1 0 1 Chro n y y n y n y Exist?
Permutation Encoding   Permutation encoding  c坦 th畛 s畛 d畛ng 畛 gi畉i quy畉t c叩c bi to叩n c坦 th畛 t畛 nh動: Ng動畛i b叩n hng Trong permutation encoding, t畉t c畉 c叩c NST l chu畛i c叩c s畛 bi畛u di畛n v畛 tr鱈 trong m畛t d達y.  NST A  1 油5 油3 油2 油6 油4 油7 油9 油8 NST B  8油 5 油6 油7 油2 油3 油1 油4 油9 Permutation encoding 動畛c s畛 d畛ng trong c叩c bi to叩n c坦 th畛 t畛. Trong m畛t vi tr動畛ng h畛p, vi畛c hi畛u ch畛nh lai gh辿p v 畛t bi畉n ph畉i th畛c hi畛n 畛 t畉o ra NST ph湛 h畛p
Path Representation 5 1 3 2 4 14 12 11 23 8 10 6 1 5 3 2 4 chromosome   (individual) gene
Value Encoding    VE  動畛c s畛 d畛ng trong c叩c bi t坦an m vi畛c m達 h坦a nh畛 ph但n l kh坦 th畛c hi畛n ( V鱈 d畛 nh動 c叩c bi t坦an m gi叩 tr畛 l c叩c s畛 th畛c).  Trong VE m畛i chromosome l m畛t chu畛i c叩c gi叩 tr畛 c坦 th畛 nh畉n d畉ng b畉t k畛 t湛y thu畛c vo t畛ng bi t坦an c畛 th畛. V鱈 d畛 gi叩 tr畛 c坦 th畛 l s畛 th畛c, k箪 t畛, ho畉c m畛t 畛i t動畛ng no 坦.  Chromosome A  1.2324 油5.3243 油0.4556 油2.3293 油2.4545 Chromosome B  ABDJEIFJDHDIERJFDLDFLFEGT Chromosome C  (back), (back), (right), (forward), (left)   VE l s畛 l畛a ch畛n t畛t 畛i v畛i m畛t s畛 bi t坦an c畛 th畛.  V畛i ki畛u m達 h坦a ny th動畛ng s畉 ph畉i x但y d畛ng m畛t s畛 ph辿p lai gh辿p v 畛t bi畉n cho c叩c bi t坦an c畛 th畛.
V鱈 d畛 v畛 m達 h坦a gi叩 tr畛 Bi to叩n:  Cho m畉ng n董 ron A c坦 c畉u tr炭c 達 bi畉t. T狸m tr畛ng s畛 gi畛a c叩c neurons trong m畉ng 畛 nh畉n 動畛c k畉t qu畉 ra mong mu畛n. M達 h坦a:  Gi叩 tr畛 th畛c trong c叩c chromosome bi畛u di畛n c叩c tr畛ng s畛 trong m畉ng.
M達 h坦a d畉ng c但y  (Tree Encoding  TE ) TE th動畛ng 動畛c s畛 d畛ng trong c叩c bi t坦an ho畉c c叩c bi畛u th畛c suy lu畉n v鱈 d畛 nh動  genetic programming .  Trong TE, m畛i chromosome l m畛t c但y g畛m c叩c 畛i t動畛ng nh動 l c叩c hm ho畉c c叩c c但u l畛nh c畛a ng担n ng畛 l畉p tr狸nh.  TE th動畛ng 動畛c d湛ng 畛i v畛i c叩c b狸a t坦an suy lu畉n ho畉c c叩c c畉u tr炭c c坦 th畛 bi畛u di畛n b畉ng c但y.   C叩c ph辿p lai gh辿p v 畛t bi畉n 畛i v畛i ki畛u m達 h坦a ny c滴ng t動董ng 畛i d畛 th畛c hi畛n.  Chromosome A Chromosome B ( + 油x 油( / 油5 油y ) ) ( do_until 油step 油wall )
M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
Bi to叩n Knapsack 01 Encoding:  0 = not exist, 1 = exist in the Knapsack Chromosome: 1010110 => Items taken: 1, 3 , 5, 6. Generate random population of  n  chromosomes: 0101010 1100100 0100011 Start 7 6 5 4 3 2 1 Item. 0 1 1 0 1 0 1 Chro n y y n y n y Exist?
Bi to叩n TSP 1 5 3 2 4 3 2 4 5 1 2 3 4 1 5 4 5 3 2 1 Population Population size  ¥ individual length
M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
0101010: Benefit= 19, Weight= 24 1100100: Benefit= 20, Weight= 19.  0100011: Benefit= 21, Weight= 18.  Bi to叩n Knapsack 01 Fitness =>  We select Chromosomes b & c.    7 6 5 4 3 2 1 Item 0 1 0 1 0 1 0 Chro 4 9 7 2 3 8 5 Benefit 4 6 4 10 4 8 7 Weight
Bi to叩n TSP f ( indiv    d  i  ( i +1)  + d n 1 1  i  <  n 1 5 3 2 4 3 2 5 1 4 2 3 4 1 5 4 5 3 2 1 58 56 55 57 4 5 3 2 1
M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
C叩c ki畛u l畛a ch畛n  C叩c nhi畛m s畉c th畛 動畛c ch畛n t畛 qu畉n th畛 l c叩c cha cho lai gh辿p (crossover). V畉n 畛 l l畛a ch畛n c叩c nhi畛m s畉c th畛 nh動 th畉 no Theo thuy畉t ti畉n h坦a Darwin's nh畛ng c叩 th畛 t畛t nh畉t s畉 動畛c ch畛n 畛 t畉o ra c叩c con ( offspring ).  C坦 nhi畛u ph動董ng ph叩p 畛 ch畛n nhi畛m s畉c th畛 t畛t nh畉t.  V鱈 d畛 l  roulette wheel selection Boltzman selection tournament selection rank selection steady state selection and many other sometimes weird methods.
Roulette Wheel Selection  Cha 動畛c ch畛n qua 畛 th鱈ch nghi c畛a ch炭ng Nhi畛m s畉c th畛 t畛t h董n, nhi畛u ng畉u nhi棚n h董n ph畉i 動畛c ch畛n T動畛ng t動畛ng m畛t  roulette wheel  n董i t畉t c畉 c叩c NST trong qu畉n th畛 動畛c 畉t l棚n K鱈ch th動畛c c畛a o畉n trong roulete wheel t動董ng 畛ng v畛i gi叩 tr畛 c畛a hm th鱈ch nghi M畛t h嘆n bi 動畛c ln trong roulette wheel v NST n董i n坦 d畛ng l畉i 動畛c l畛a ch畛n NST v畛i gi叩 tr畛 th鱈ch nghi l畛n s畉 動畛c ch畛n nhi畛u h董n
Rank Selection  Roulette Wheel Selection s畉 c坦 v畉n 畛 khi c坦 s畛 kh叩c nhau l畛n gi畛a c叩c 畛 th鱈ch nghi  V鱈 d畛: n畉u NST t畛t nh畉t c坦 畛 th鱈ch nghi l 90% th狸 c叩c NST kh叩c r畉t 鱈t c董 h畛i 動畛c l畛a ch畛n Rank selection t鱈nh h畉ng qu畉n th畛 畉u ti棚n v sau 坦 m畛i NST nh畉n l畉i gi叩 tr畛 th鱈ch nghi 動畛c 畛nh ngh挑a b畛i h畉ng c畛a ch炭ng NST t畛i nh畉t s畉 c坦 畛 th鱈ch nghi l  1 , NST t畛i th畛 hai l  2  etc. v NST t畛t nh畉t s畉 c坦 畛 th鱈ch nghi l  N  (number of chromosomes in population).
Roulette Wheel Selection Ti畉n tr狸nh tr棚n c坦 th畛 動畛c m担 t畉 b畛i thu畉t to叩n sau:  1.  [Sum]  Calculate the sum ( S ) of all chromosome fitnesses in population .  2.  [Select]  Generate random number (r) from the interval  (0,S) .  3.  [Loop]  Go through the population and start summing the fitnesses from  0   S (call this C). When C is greater then  r , stop and return the chromosome where you are.
Rank Selection   Tr畉ng th叩i s畉 thay 畛i sau khi 畛 th鱈ch nghi s畉 動畛c thay 畛i b畛i rank  Situation before ranking (graph of fitnesses)   Situation after ranking (graph of order numbers)   B但y gi畛 t畉t c畉 c叩c NST s畉 c坦 m畛t s畛 ng畉u nhi棚n 畛 l畛a ch畛n
Steady-State Selection  Trong t畉t c叩c th畉 h畛 s畉 c坦 m畛t vi NST t畛t (V畛i 畛 th鱈ch nghi cao) 動畛c ch畛n 畛 t畉o NST con m畛i.  M畛t vi NST t畛i (v畛i 畛 th鱈ch nghi th畉p) s畉 b畛 x坦a b畛 v c叩c NST con m畛i s畉 thay th畉 ch畛 c畛a ch炭ng.  Ph畉n c嘆n l畉i c畛a qu畉n th畛 t畉o ra th畉 h畛 m畛i.
M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
Crossover and Mutation  Crossover and mutation l hai ph辿p to叩n c董 b畉n c畛a thu畉t to叩n gen  S畛 thi hnh thu畉t to叩n Gen ph畛 thu畛c r畉t nhi畛u vo crossover v mutation Ki畛u v s畛 th畛 hi畛n c畛a c叩c to叩n t畛 ny ph畛 thu畛c vo ki畛u m達 h坦a v c滴ng ph畛 thu畛c vo bi to叩n C坦 nhi畛u c叩ch 畛 th畛c hi畛n to叩n t畛 crossover v mutation.
Crossover for Binary Encoding  Single point crossover   m畛t i畛m crossover 動畛c l畛a ch畛n, chu畛i nh畛 ph但n t畛 b畉t 畉u c畛a NST t畛i i畛m crossover 動畛c sao ch辿p t畛 cha 1, ph畉n cu畛i 動畛c sao ch辿p t畛 cha c嘆n l畉i 11001 011+11011 111  =  11001111
Two point crossover   Hai i畛m crossover 動畛c ch畛n M畛t chu畛i nh畛 ph但n t畛 b畉t 畉u c畛a NST t畛i i畛m  crossover 畉u ti棚n 動畛c sao ch辿p t畛 cha th畛 nh畉t, ph畉n t畛  i畛m 畉u ti棚n t畛i i畛m th畛 hai crossover 動畛c sao ch辿p t畛 cha th畛 hai v ph畉n cu畛i 動畛c sao ch辿p t畛 cha 畉u ti棚n 11 0010 11  + 11 0111 11 =  11011111
Crossover for Binary Encoding Uniform crossover  - C叩c bit 動畛c sao ch辿p ng畉u nhi棚n t畛 cha th畛 nh畉t ho畉c cha th畛 hai Arithmetic crossover   M畛t ph辿p to叩n 動畛c th畛c hi畛n 畛 t畉o ra con m畛i (new offspring)  11001011 + 11011111 = 11001001 (LOGICAL AND)
Mutation for Binary Encoding 畉o bit   ch畛n c叩c bits v 畉o ng動畛c gi叩 tr畛 c畛a ch炭ng  1 1 001001 => 油1 0 001001
Crossover for Permutation Encoding Single point crossover   l畛a ch畛n m畛t i畛m 畛 lai gh辿p, the permutation 動畛c sao ch辿p t畛 i畛m 畉u ti棚n 畉n i畛m lai gh辿p, sau 坦 cha c嘆n l畉i 動畛c duy畛t qua t畛ng s畛 v n畉u s畛 坦 ch動a c坦 trong con, n坦 動畛c th棚m theo th畛 t畛 c畛a NST th畛 hai ( 1 2 3 4 5  | 6 7 8 9) + (4 5 3  6  2  9  1  7   8 ) = ( 1 2 3 4 5  6 9 7 8) Note: c坦 nhi畛u c叩ch 畛 t畉o ra ph畉n sau i畛m lai gh辿p
Crossover for Permutation Encoding two point crossover    畉u ti棚n, ch畛n hai i畛m c畉t, bi畛u th畛 b畛i d畉u |, i畛m c畉t ny 動畛c chen vo m畛t c叩ch ng畉u nhi棚n vo c湛ng m畛t v畛 tr鱈 c畛a m畛i m畉u cha m畉.
V鱈 d畛 :  - C坦 hai m畉u cho m畉 p1 v p2, v畛i c叩c i畛m c畉t sau thnh ph畛 th畛 ba v th畛 b畉y  p1 = (1 9 2 | 4 6 5 7 | 8 3)  p2 = (4 5 9 | 1 8 7 6 | 2 3)  - Hai m畉u con c1 v c2 s畉 動畛c sinh ra theo c叩ch sau. 畉u ti棚n, c叩c o畉n gi畛a hai i畛m c畉t s畉 動畛c ch辿p vo c叩c m畉u con:  c1 = (x x x | 4 6 5 7 | x x)  c2 = (x x x | 1 8 7 6 | x x)
- B動畛c k畉 ti畉p l b畉t 畉u t畛 i畛m c畉t th畛 hai c畛a m畛t trong hai m畉u cha m畉, n畉u ta ang mu畛n hon t畉t m畉u c1, th狸 ta s畉 b畉t 畉u t畛 i畛m c畉t th畛 hai c畛a m畉u p2, ta ch辿p c叩c thnh ph畛 t畛 i畛m c畉t ny theo th畛 t畛 vo c叩c ch畛 c嘆n tr畛ng c畛a c1, b畛 qua nh畛ng thnh ph畛 m c1 達 c坦. Khi 畉n cu畛i m畉u p2, th狸 quay l畉i 畉u m畉u p2 ti畉p t畛c ch辿p sang c1 cho 畉n khi c1 畛.
油
Mutation of Permuation Encoding   Order changing   hai i畛m 動畛c l畛a ch畛n v thay 畛i   (1  2  3 4 5 6  8  9 7) => (1  8  3 4 5 6  2  9 7)
Lai gh辿p 畛i v畛i m達 h坦a gi叩 tr畛 C坦 th畛 s畛 d畛ng c叩c lai gh辿p nh動 ki畛u m達 h坦a nh畛 ph但n V鱈 d畛: (back), (back),  (right), (forward), (left) (right), (back),  (left), (back), (forward ) =>   (back), (back),   (left), (back), (forward )
畛t bi畉n 畛i v畛i m達 h坦a gi叩 tr畛 C畛ng vo ho畉c tr畛 i m畛t s畛 nh畛 t畛 c叩c gi叩 tr畛 達 動畛c ch畛n  V鱈 d畛: (1.29 油5.68 油 2.86  油 4.11  油5.55) => (1.29 油5.68 油 2.73  油 4.22  油5.55)
Crossover for Tree Encoding   Tree crossover   M畛t i畛m 畛t bi畉n 動畛c ch畛n trong c畉 hai cha, c叩c cha 動畛c ph但n chia b畛i i畛m 畛t bi畉n v nh畛ng ph畉n sau i畛m 畛t bi畉n 動畛c thay 畛i 畛 t畉o ra c叩c con
畛t bi畉n 畛i v畛i m達 h坦a d畉ng c但y
Crossover and Mutation Probability   C坦 hai tham s畛 c董 b畉n c畛a c叩c thu畉t to叩n gen -  x叩c su畉t crossover  v x叩c su畉t mutation  Crossover probability : m畛c 畛 th動畛ng xuy棚n crossover 動畛c th畛c hi畛n  N畉u kh担ng c坦 crossover, offspring 動畛c sao ch辿p ch鱈nh x叩c t畛 cha m畉.  N畉u c坦 crossover, offspring con 動畛c t畉o ra t畛 m畛t ph畉n c畛a NST cha  N畉u x叩c su畉t l  100% , th狸 t畉t c畉 offspring 動畛c t畉o ra b畛i crossover.  N畉u l  0% , th畉 h畛 m畛i t畉o ra b畉ng c叩ch sao ch辿p nguy棚n c叩c NST c畛a th畉 h畛 c滴 Crossover hy v畛ng t畉o ra c叩c NST m畛i s畉 ch畛a ph畉n t畛t c畛a c叩c NST c滴 v nh動 v畉y NST m畛i s畉 t畛t h董n
Mutation Probability Mutation probability : M畛c 畛 th動畛ng xuy棚n c畛a c叩c ph畉n s畉 動畛c 畛t bi畉n N畉u kh担ng c坦 mutation, offspring sinh ra s畉 gi畛ng sau khi crossover (or directly copied) N畉u mutation 動畛c th畛c hi畛n,m畛t hay nhi畛u ph畉n c畛a NST s畉 動畛c thay 畛i N畉u x叩c su畉t l  100% , th狸 NST s畉 動畛c thay 畛i, n畉u l  0% , kh担ng c坦 thay 畛i g狸 Mutation sinh ra 畛 tr叩nh thu畉t to叩n gen r董i vo c畛c tr畛 畛a ph動董ng Mutation should not occur very often, because then the genetic algorithm will change to a  random search .
M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
Thu畉t to叩n d畛ng khi qu畉n th畛 h畛i t畛,   i.e. c叩 th畛 t畛t nh畉t trong qu畉n th畛 gi畛ng v畛i k畉t qu畉 mong mu畛n K畉t th炭c khi s畛 th畉 h畛 sinh ra 畉t 畉n s畛 sinh ra tr動畛c K畉t th炭c khi c叩c c畉 th畛 tr畛 l棚n gi畛ng nhau K畉t th炭c khi c叩 th畛 t畛t nh畉t trong qu畉n th畛 kh担ng thay 畛i theo th畛i gian Termination Criteria
General Recommendations for Genetic Algorithms Th畛 nghi畛m thu畉t to叩n gen cho bi to叩n c畛 th畛, b畛i v狸 kh担ng c坦 l箪 thuy畉t chung c坦 th畉 lm h畛p c叩c tham s畛 c畛a thu畉t to叩n gen cho b畉t c畛 bi to叩n no S畛 gi畛i thi畛u th動畛ng l k畉t qu畉 vi畛c h畛c kinh nghi畛m c畛a thu畉t to叩n gen, c叩i th動畛ng th畛c hi畛n ch畛 tr棚n m達 h坦a nh畛 ph但n
Recommendations for Genetic Algorithms Crossover rate T畛c 畛 lai gh辿p th動畛ng l cao, kho畉ng  80%-95% . (M畉c d湛 v畉y m畛t vi k畉t qu畉 cho m畛t vi bi to叩n, t畛c 畛 lai gh辿p kho畉ng 60% l t畛t nh畉t.) Mutation rate X叩c su畉t 畛t bi畉n th動畛ng l r畉t th畉p. T畛c 畛 t畛t nh畉t kho畉ng  0.5%-1% .  Population size K鱈ch th動畛c qu畉n th畛 r畉t l畛n th動畛ng kh担ng c畉i ti畉n t畛c 畛 c畛a thu畉t to叩n gen (in the sense of speed of finding solution).  K鱈ch th動畛c t畛t kho畉ng  20-30 , M畉c d湛 m畛t vi tr動畛ng h畛p kho畉ng 50-100 th狸 t畛t h董n.  Nghi棚n c畛u th畉y r畉ng k鱈ch th動畛c c畛a qu畉n th畛 ph畛 thu畛c vo k鱈ch th動畛c c畛a chu畛i m達 h坦a (chromosomes).  N畉u c坦 NST 32 bits, th狸 k鱈ch th動畛c qu畉n th畛 n棚n cao h董n 16
Recommendations for Genetic Algorithms Selection roulette wheel selection  c坦 th畉 動畛c s畛 d畛ng, nh動ng th畛nh tho畉ng rank selection c坦 th畛 t畛t h董n  There are also some more sophisticated methods that change parameters of selection during the running of a genetic algorithm.  Elitism  should be used  if you do not use any other method for saving the best solutions.  Encoding Ph畛 thu畛c vo bi to叩n Crossover and mutation type Ph畛 thu畛c vo m達 h坦a v bi to叩n
働u i畛m 働u i畛m ch鱈nh l kh畉 nng song song c畛a thu畉t to叩n  Gas duy畛t qua kh担ng gian t狸m ki畉m s畛 d畛ng nhi畛u c叩 th畛 (and with genotype rather than phenotype) v 鱈t m畉c ph畉i c畛c tr畛 畛a ph動董ng nh動 c叩c thu畉t to叩n kh叩c  D畛 th畛 hi畛n  Khi 達 c坦 thu畉t to叩n gen c董 b畉n, ch畛 c畉n vi畉t m畛t NST m畛i (just one object) 畛 x畛 l箪 bi to叩n kh叩c V畛i c湛ng c叩ch m達 h坦a b畉n c坦 th畛 thay 畛i hm th鱈ch nghi  M畉c d湛 v畉y, trong m畛t s畛 tr動畛ng h畛p ch畛n v th畛 hi畛n m達 h坦a s畉 g畉p kh坦 khn
Nh動畛c i畛m Nh動畛c i畛m ch鱈nh c畛a Gas l th畛i gian t鱈nh to叩n  GAs c坦 th畛 ch畉m h董n c叩c thu畉t to叩n kh叩c C坦 th畛 k畉t th炭c t鱈nh to叩n b畉t c畛 l炭c no,
TEST RESULTS
Ad

Recommended

Support Vector Machines
Support Vector Machines
nextlib
Introduction to Genetic Algorithms
Introduction to Genetic Algorithms
Ahmed Othman
Support Vector Machines for Classification
Support Vector Machines for Classification
Prakash Pimpale
Genetic algorithms
Genetic algorithms
zamakhan
Suy di畛n th畛ng k棚 v ng担n ng畛 R (1): T鱈nh to叩n x叩c su畉t v m担 ph畛ng
Suy di畛n th畛ng k棚 v ng担n ng畛 R (1): T鱈nh to叩n x叩c su畉t v m担 ph畛ng
Ti Ti
Mot phuong phap tien hoa trong viec tao ho chua tap cac bo phan loai
Mot phuong phap tien hoa trong viec tao ho chua tap cac bo phan loai
Phuong Pham
Phan-tich-thiet-ke-thuat-toan-bai-tap-DNA.pptx
Phan-tich-thiet-ke-thuat-toan-bai-tap-DNA.pptx
mybrightjourney2024
K畉t h畛p gi畉i thu畉t di truy畛n v logic m畛 gi畉i bi to叩n t畛i 動u a m畛c ti棚u.pdf
K畉t h畛p gi畉i thu畉t di truy畛n v logic m畛 gi畉i bi to叩n t畛i 動u a m畛c ti棚u.pdf
Man_Ebook
S叩ng t畉o vn h坦a S叩ng t畉o vn minh: Thi棚n c董 v Thi棚n m畛nh c畛a Vi畛t Nam - ...
S叩ng t畉o vn h坦a S叩ng t畉o vn minh: Thi棚n c董 v Thi棚n m畛nh c畛a Vi畛t Nam - ...
Chu Vn 畛c
畉o Tr畛 Qu畛c - An bang v 10 th担ng i畛p c畛a 畉ng t畉o h坦a t畛i cao - 畉ng L棚 Ng...
畉o Tr畛 Qu畛c - An bang v 10 th担ng i畛p c畛a 畉ng t畉o h坦a t畛i cao - 畉ng L棚 Ng...
Chu Vn 畛c
20 畛 THI H畛C SINH GI畛I TI畉NG ANH 7 - CC T畛NH NM 2023 - 2025 (C P N CHI...
20 畛 THI H畛C SINH GI畛I TI畉NG ANH 7 - CC T畛NH NM 2023 - 2025 (C P N CHI...
Nguyen Thanh Tu Collection
S畛c M畉nh v S畛 Ti畉n H坦a c畛a Qu畛c Gia - 畉ng L棚 Nguy棚n V滴
S畛c M畉nh v S畛 Ti畉n H坦a c畛a Qu畛c Gia - 畉ng L棚 Nguy棚n V滴
Chu Vn 畛c
B畛 畛 THI TH畛 VO 10 MN TI畉NG ANH - CC S畛 GIO D畛C THEO CH働NG TRNH GDPT 2...
B畛 畛 THI TH畛 VO 10 MN TI畉NG ANH - CC S畛 GIO D畛C THEO CH働NG TRNH GDPT 2...
Nguyen Thanh Tu Collection
9. Ph叩p lu畉t trong h畛 th畛ng c叩c c担ng c畛.pptx
9. Ph叩p lu畉t trong h畛 th畛ng c叩c c担ng c畛.pptx
nguyenngockhanh17022
bai giang mon chuyen Chuyen de giao tiep.ppt
bai giang mon chuyen Chuyen de giao tiep.ppt
TuongHoang19
Thi畛n Minh Tri畉t v Thi畛n Minh Tri畉t, m畉c kh畉i c畛a 畉ng T畛i cao t畉o h坦a - 畉n...
Thi畛n Minh Tri畉t v Thi畛n Minh Tri畉t, m畉c kh畉i c畛a 畉ng T畛i cao t畉o h坦a - 畉n...
Chu Vn 畛c
ho chi minh ideology for university learning
ho chi minh ideology for university learning
NguytHi7
C畉m nang ki畉n t畉o thnh c担ng: S畛 t畛nh th畛c c畛a n動畛c
C畉m nang ki畉n t畉o thnh c担ng: S畛 t畛nh th畛c c畛a n動畛c
Chu Vn 畛c
30 畛 THI H畛C SINH GI畛I TI畉NG ANH 9 - CC T畛NH NM 2024 - 2025 (C P N CHI...
30 畛 THI H畛C SINH GI畛I TI畉NG ANH 9 - CC T畛NH NM 2024 - 2025 (C P N CHI...
Nguyen Thanh Tu Collection
畉o lm giu, thnh c担ng ton di畛n: M畉c kh畉i c畛a 畉ng t畛i cao t畉o h坦a - 畉ng ...
畉o lm giu, thnh c担ng ton di畛n: M畉c kh畉i c畛a 畉ng t畛i cao t畉o h坦a - 畉ng ...
Chu Vn 畛c
Hai thi棚n m畛nh v挑 畉i h畛p nh畉t - 畉ng L棚 Nguy棚n V滴
Hai thi棚n m畛nh v挑 畉i h畛p nh畉t - 畉ng L棚 Nguy棚n V滴
Chu Vn 畛c
20-chuyen-de-ngu-phap-tieng-anh-on-thi-thpt-quoc-gia.pdf
20-chuyen-de-ngu-phap-tieng-anh-on-thi-thpt-quoc-gia.pdf
leogoemmanguyenthao
遺鞄動董稼乙喝3喝乙畛i壊庄稼鞄厩庄艶艶稼4444444444444444444
遺鞄動董稼乙喝3喝乙畛i壊庄稼鞄厩庄艶艶稼4444444444444444444
trang103525
bai giang mon NHAP MON HOA SINH HOC.pptx
bai giang mon NHAP MON HOA SINH HOC.pptx
TuongHoang19
BI T畉P B畛 TR畛 TI畉NG ANH 12 GLOBAL SUCCESS BM ST 畛 MINH H畛A M畛I NH畉T - PHI...
BI T畉P B畛 TR畛 TI畉NG ANH 12 GLOBAL SUCCESS BM ST 畛 MINH H畛A M畛I NH畉T - PHI...
Nguyen Thanh Tu Collection
Tinh th畉n tam gi叩o: Nho - Ph畉t - 畉o
Tinh th畉n tam gi叩o: Nho - Ph畉t - 畉o
Chu Vn 畛c
Describe the picture to practice speaking skills
Describe the picture to practice speaking skills
GraceHo68
vng-da-do-tng-bilirubin-gi叩n-ti畉p-go-go-br-br (1).pptx
vng-da-do-tng-bilirubin-gi叩n-ti畉p-go-go-br-br (1).pptx
BoQucNguyn9
2024 Trend Updates: What Really Works In SEO & Content Marketing
2024 Trend Updates: What Really Works In SEO & Content Marketing
Search Engine Journal
Storytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design Process
Chiara Aliotta

More Related Content

Recently uploaded (20)

S叩ng t畉o vn h坦a S叩ng t畉o vn minh: Thi棚n c董 v Thi棚n m畛nh c畛a Vi畛t Nam - ...
S叩ng t畉o vn h坦a S叩ng t畉o vn minh: Thi棚n c董 v Thi棚n m畛nh c畛a Vi畛t Nam - ...
Chu Vn 畛c
畉o Tr畛 Qu畛c - An bang v 10 th担ng i畛p c畛a 畉ng t畉o h坦a t畛i cao - 畉ng L棚 Ng...
畉o Tr畛 Qu畛c - An bang v 10 th担ng i畛p c畛a 畉ng t畉o h坦a t畛i cao - 畉ng L棚 Ng...
Chu Vn 畛c
20 畛 THI H畛C SINH GI畛I TI畉NG ANH 7 - CC T畛NH NM 2023 - 2025 (C P N CHI...
20 畛 THI H畛C SINH GI畛I TI畉NG ANH 7 - CC T畛NH NM 2023 - 2025 (C P N CHI...
Nguyen Thanh Tu Collection
S畛c M畉nh v S畛 Ti畉n H坦a c畛a Qu畛c Gia - 畉ng L棚 Nguy棚n V滴
S畛c M畉nh v S畛 Ti畉n H坦a c畛a Qu畛c Gia - 畉ng L棚 Nguy棚n V滴
Chu Vn 畛c
B畛 畛 THI TH畛 VO 10 MN TI畉NG ANH - CC S畛 GIO D畛C THEO CH働NG TRNH GDPT 2...
B畛 畛 THI TH畛 VO 10 MN TI畉NG ANH - CC S畛 GIO D畛C THEO CH働NG TRNH GDPT 2...
Nguyen Thanh Tu Collection
9. Ph叩p lu畉t trong h畛 th畛ng c叩c c担ng c畛.pptx
9. Ph叩p lu畉t trong h畛 th畛ng c叩c c担ng c畛.pptx
nguyenngockhanh17022
bai giang mon chuyen Chuyen de giao tiep.ppt
bai giang mon chuyen Chuyen de giao tiep.ppt
TuongHoang19
Thi畛n Minh Tri畉t v Thi畛n Minh Tri畉t, m畉c kh畉i c畛a 畉ng T畛i cao t畉o h坦a - 畉n...
Thi畛n Minh Tri畉t v Thi畛n Minh Tri畉t, m畉c kh畉i c畛a 畉ng T畛i cao t畉o h坦a - 畉n...
Chu Vn 畛c
ho chi minh ideology for university learning
ho chi minh ideology for university learning
NguytHi7
C畉m nang ki畉n t畉o thnh c担ng: S畛 t畛nh th畛c c畛a n動畛c
C畉m nang ki畉n t畉o thnh c担ng: S畛 t畛nh th畛c c畛a n動畛c
Chu Vn 畛c
30 畛 THI H畛C SINH GI畛I TI畉NG ANH 9 - CC T畛NH NM 2024 - 2025 (C P N CHI...
30 畛 THI H畛C SINH GI畛I TI畉NG ANH 9 - CC T畛NH NM 2024 - 2025 (C P N CHI...
Nguyen Thanh Tu Collection
畉o lm giu, thnh c担ng ton di畛n: M畉c kh畉i c畛a 畉ng t畛i cao t畉o h坦a - 畉ng ...
畉o lm giu, thnh c担ng ton di畛n: M畉c kh畉i c畛a 畉ng t畛i cao t畉o h坦a - 畉ng ...
Chu Vn 畛c
Hai thi棚n m畛nh v挑 畉i h畛p nh畉t - 畉ng L棚 Nguy棚n V滴
Hai thi棚n m畛nh v挑 畉i h畛p nh畉t - 畉ng L棚 Nguy棚n V滴
Chu Vn 畛c
20-chuyen-de-ngu-phap-tieng-anh-on-thi-thpt-quoc-gia.pdf
20-chuyen-de-ngu-phap-tieng-anh-on-thi-thpt-quoc-gia.pdf
leogoemmanguyenthao
遺鞄動董稼乙喝3喝乙畛i壊庄稼鞄厩庄艶艶稼4444444444444444444
遺鞄動董稼乙喝3喝乙畛i壊庄稼鞄厩庄艶艶稼4444444444444444444
trang103525
bai giang mon NHAP MON HOA SINH HOC.pptx
bai giang mon NHAP MON HOA SINH HOC.pptx
TuongHoang19
BI T畉P B畛 TR畛 TI畉NG ANH 12 GLOBAL SUCCESS BM ST 畛 MINH H畛A M畛I NH畉T - PHI...
BI T畉P B畛 TR畛 TI畉NG ANH 12 GLOBAL SUCCESS BM ST 畛 MINH H畛A M畛I NH畉T - PHI...
Nguyen Thanh Tu Collection
Tinh th畉n tam gi叩o: Nho - Ph畉t - 畉o
Tinh th畉n tam gi叩o: Nho - Ph畉t - 畉o
Chu Vn 畛c
Describe the picture to practice speaking skills
Describe the picture to practice speaking skills
GraceHo68
vng-da-do-tng-bilirubin-gi叩n-ti畉p-go-go-br-br (1).pptx
vng-da-do-tng-bilirubin-gi叩n-ti畉p-go-go-br-br (1).pptx
BoQucNguyn9
S叩ng t畉o vn h坦a S叩ng t畉o vn minh: Thi棚n c董 v Thi棚n m畛nh c畛a Vi畛t Nam - ...
S叩ng t畉o vn h坦a S叩ng t畉o vn minh: Thi棚n c董 v Thi棚n m畛nh c畛a Vi畛t Nam - ...
Chu Vn 畛c
畉o Tr畛 Qu畛c - An bang v 10 th担ng i畛p c畛a 畉ng t畉o h坦a t畛i cao - 畉ng L棚 Ng...
畉o Tr畛 Qu畛c - An bang v 10 th担ng i畛p c畛a 畉ng t畉o h坦a t畛i cao - 畉ng L棚 Ng...
Chu Vn 畛c
20 畛 THI H畛C SINH GI畛I TI畉NG ANH 7 - CC T畛NH NM 2023 - 2025 (C P N CHI...
20 畛 THI H畛C SINH GI畛I TI畉NG ANH 7 - CC T畛NH NM 2023 - 2025 (C P N CHI...
Nguyen Thanh Tu Collection
S畛c M畉nh v S畛 Ti畉n H坦a c畛a Qu畛c Gia - 畉ng L棚 Nguy棚n V滴
S畛c M畉nh v S畛 Ti畉n H坦a c畛a Qu畛c Gia - 畉ng L棚 Nguy棚n V滴
Chu Vn 畛c
B畛 畛 THI TH畛 VO 10 MN TI畉NG ANH - CC S畛 GIO D畛C THEO CH働NG TRNH GDPT 2...
B畛 畛 THI TH畛 VO 10 MN TI畉NG ANH - CC S畛 GIO D畛C THEO CH働NG TRNH GDPT 2...
Nguyen Thanh Tu Collection
9. Ph叩p lu畉t trong h畛 th畛ng c叩c c担ng c畛.pptx
9. Ph叩p lu畉t trong h畛 th畛ng c叩c c担ng c畛.pptx
nguyenngockhanh17022
bai giang mon chuyen Chuyen de giao tiep.ppt
bai giang mon chuyen Chuyen de giao tiep.ppt
TuongHoang19
Thi畛n Minh Tri畉t v Thi畛n Minh Tri畉t, m畉c kh畉i c畛a 畉ng T畛i cao t畉o h坦a - 畉n...
Thi畛n Minh Tri畉t v Thi畛n Minh Tri畉t, m畉c kh畉i c畛a 畉ng T畛i cao t畉o h坦a - 畉n...
Chu Vn 畛c
ho chi minh ideology for university learning
ho chi minh ideology for university learning
NguytHi7
C畉m nang ki畉n t畉o thnh c担ng: S畛 t畛nh th畛c c畛a n動畛c
C畉m nang ki畉n t畉o thnh c担ng: S畛 t畛nh th畛c c畛a n動畛c
Chu Vn 畛c
30 畛 THI H畛C SINH GI畛I TI畉NG ANH 9 - CC T畛NH NM 2024 - 2025 (C P N CHI...
30 畛 THI H畛C SINH GI畛I TI畉NG ANH 9 - CC T畛NH NM 2024 - 2025 (C P N CHI...
Nguyen Thanh Tu Collection
畉o lm giu, thnh c担ng ton di畛n: M畉c kh畉i c畛a 畉ng t畛i cao t畉o h坦a - 畉ng ...
畉o lm giu, thnh c担ng ton di畛n: M畉c kh畉i c畛a 畉ng t畛i cao t畉o h坦a - 畉ng ...
Chu Vn 畛c
Hai thi棚n m畛nh v挑 畉i h畛p nh畉t - 畉ng L棚 Nguy棚n V滴
Hai thi棚n m畛nh v挑 畉i h畛p nh畉t - 畉ng L棚 Nguy棚n V滴
Chu Vn 畛c
20-chuyen-de-ngu-phap-tieng-anh-on-thi-thpt-quoc-gia.pdf
20-chuyen-de-ngu-phap-tieng-anh-on-thi-thpt-quoc-gia.pdf
leogoemmanguyenthao
遺鞄動董稼乙喝3喝乙畛i壊庄稼鞄厩庄艶艶稼4444444444444444444
遺鞄動董稼乙喝3喝乙畛i壊庄稼鞄厩庄艶艶稼4444444444444444444
trang103525
bai giang mon NHAP MON HOA SINH HOC.pptx
bai giang mon NHAP MON HOA SINH HOC.pptx
TuongHoang19
BI T畉P B畛 TR畛 TI畉NG ANH 12 GLOBAL SUCCESS BM ST 畛 MINH H畛A M畛I NH畉T - PHI...
BI T畉P B畛 TR畛 TI畉NG ANH 12 GLOBAL SUCCESS BM ST 畛 MINH H畛A M畛I NH畉T - PHI...
Nguyen Thanh Tu Collection
Tinh th畉n tam gi叩o: Nho - Ph畉t - 畉o
Tinh th畉n tam gi叩o: Nho - Ph畉t - 畉o
Chu Vn 畛c
Describe the picture to practice speaking skills
Describe the picture to practice speaking skills
GraceHo68
vng-da-do-tng-bilirubin-gi叩n-ti畉p-go-go-br-br (1).pptx
vng-da-do-tng-bilirubin-gi叩n-ti畉p-go-go-br-br (1).pptx
BoQucNguyn9

Featured (20)

2024 Trend Updates: What Really Works In SEO & Content Marketing
2024 Trend Updates: What Really Works In SEO & Content Marketing
Search Engine Journal
Storytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design Process
Chiara Aliotta
Artificial Intelligence, Data and Competition SCHREPEL June 2024 OECD dis...
Artificial Intelligence, Data and Competition SCHREPEL June 2024 OECD dis...
OECD Directorate for Financial and Enterprise Affairs
How to Leverage AI to Boost Employee Wellness - Lydia Di Francesco - SocialHR...
How to Leverage AI to Boost Employee Wellness - Lydia Di Francesco - SocialHR...
SocialHRCamp
2024 State of Marketing Report by Hubspot
2024 State of Marketing Report by Hubspot
Marius Sescu
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
Expeed Software
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
Pixeldarts
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
marketingartwork
Skeleton Culture Code
Skeleton Culture Code
Skeleton Technologies
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
Neil Kimberley
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
contently
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
Albert Qian
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
Search Engine Journal
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
SpeakerHub
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
Clark Boyd
Getting into the tech field. what next
Getting into the tech field. what next
Tessa Mero
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Lily Ray
How to have difficult conversations
How to have difficult conversations
Rajiv Jayarajah, MAppComm, ACC
2024 Trend Updates: What Really Works In SEO & Content Marketing
2024 Trend Updates: What Really Works In SEO & Content Marketing
Search Engine Journal
Storytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design Process
Chiara Aliotta
How to Leverage AI to Boost Employee Wellness - Lydia Di Francesco - SocialHR...
How to Leverage AI to Boost Employee Wellness - Lydia Di Francesco - SocialHR...
SocialHRCamp
2024 State of Marketing Report by Hubspot
2024 State of Marketing Report by Hubspot
Marius Sescu
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
Expeed Software
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
Pixeldarts
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
marketingartwork
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
Neil Kimberley
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
contently
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
Albert Qian
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
Search Engine Journal
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
SpeakerHub
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
Clark Boyd
Getting into the tech field. what next
Getting into the tech field. what next
Tessa Mero
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Lily Ray
Ad

Ga

  • 1. Thu畉t to叩n Gen Tr畉n Cao Tr動畛ng Khoa CNTT-H畛c vi畛n KTQS
  • 2. N畛i dung Thu畉t to叩n Gen C叩c thnh ph畉n c董 b畉n c畛a thu畉t to叩n gen C叩c khuy畉n c叩o khi s畛 d畛ng thu畉t to叩n gen 働u v nh動畛c i畛m c畛a thu畉t to叩n gen Demo ch動董ng tr狸nh
  • 3. Thu畉t to叩n Gen (GAs) GAs (John Holland) m担 ph畛ng ti畉n h坦a t畛 nhi棚n (Darwinian Evolution) 畛 m畛c gen s畛 d畛ng t動 t動畛ng c畛a survival of the fittest M畛t c叩 th畉 ( chromosome ) m担 t畉 m畛t l畛i gi畉i 畛ng vi棚n c畛a bi to叩n. M畛t t畉p c叩c c叩 th畛 &quot;alive, g畛i l qu畉n th畛 ( population) 動畛c ti畉n h坦a t畛 th畉 h畛 ny t畛i th畉 h畛 kh叩c ph畛 thu畛c vo s畛 th鱈ch nghi c畛a c叩c c叩 th畛 Hope: Th畉 h畛 sinh ra s畉 ch畛a l畛i gi畉i c畛a bi to叩n
  • 4. Sinh ra th畉 h畛 kh畛i t畉o v畛i qu畉n th畛 P(0), ch畛 s畛 i ch畛 ra th畉 h畛 th畛 i L畉p cho 畉n khi qu畉n th畛 h畛i t畛 or ti棚u chu畉n k畉t th炭c 畉t 動畛c 叩nh gi叩 畛 th鱈ch nghi c畛a m畛i c叩 th畛 trong P( i ) L畛a ch畛n c叩c cha t畛 P( i ) d畛a tr棚n 畛 th鱈ch nghi c畛a ch炭ng trong P( i ) p d畛ng c叩c to叩n t畛 Gen (crossover, mutation) t畛 c叩c cha 達 ch畛n 畛 sinh ra c叩c con ( offspring) 畉t 動畛c th畉 h畛 ti畉p theo P( i + 1) t畛 c叩c con v c叩c c叩 th畛 畛 th畉 h畛 P( i ) Thu畉t to叩n Gen
  • 5. Procedure GA begin t := 0 ; initialize P(t) ; evaluate P(t) ; while (not termination-condition) do begin t := t + 1 ; select P(t) from P(t-1) ; alter P(t) ; evaluate P(t) ; end end C畉u tr炭c c畛a GA Step 0 : Initialization Step 1 : Selection Step 2 : Crossover Step 3 : Mutation Step 5 : Termination Test Step 6 : End Step 4 : Evaluation
  • 6. M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
  • 7. Bi to叩n Knapsack 01 B畉n chu畉n b畛 i picnic V b畉n c坦 m畛t s畛 c叩c v畉t m b畉n c坦 th畛 c畉m theo M畛i v畉t c坦 m畛t weight v m畛t benefit hay value. C坦 m畛t c叩i t炭i gi畛i h畉n weight b畉n c坦 th畉 c畉m theo M畛i v畉t ch畛 動畛c ch畛n t畛i a 1 l畉n B畉n mu畛n c畉m c叩c v畉t mang theo v畛i max benefit M担 t畉 bi to叩n:
  • 8. Bi to叩n Knapsack 01 畛 v畉t: 1 2 3 4 5 6 7 Gi叩 tr畛: 5 8 3 2 7 9 4 T.l動畛ng: 7 8 4 10 4 6 4 Kh畛i l動畛ng t畛i a c坦 th畛 mang l 22 pounds X畉p 畛 v畉t 畛 c坦 gi叩 tr畛 l畛n nh畉t Example:
  • 9. Problem: M畛t ng動畛i b叩n hng c畉n gh辿 qua t畉t c畉 c叩c thnh ph畛, m畛i thnh ph畛 m畛t l畉n v tr畛 l畉i thnh ph畛 ban 畉u . C坦 chi ph鱈 di chuy畛n gi畛a t畉t c畉 c叩c thnh ph畛. T狸m hnh tr狸nh c坦 t畛ng chi ph鱈 nh畛 nh畉t Bi to叩n TSP 5 1 3 2 4 14 12 11 23 8 10 6
  • 10. M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
  • 11. Encoding M達 h坦a nh畛 ph但n (Binary encoding) l ki畛u th担ng d畛ng nh畉t b畛i v狸: nghi棚n c畛u 畉u ti棚n v畛 thu畉t to叩n Gen s畛 d畛ng ki畛u m達 h坦a ny v b畛i v狸 n坦 董n gi畉n Trong m達 h坦a nh畛 ph但n, m畛i nhi畛m s畉c th畛 l chu畛i bits - 0 or 1 . Chromosome A 101100101100101011100101 Chromosome B 111111100000110000011111 M達 h坦a nh畛 ph但n 動a ra nhi畛u kh畉 nng c畛a nhi畛m s畉c th畛 v畛i m畛t s畛 l動畛ng nh畛 c叩c alen C叩c m達 h坦a ny th動畛ng kh担ng t畛 nhi棚n cho nhi畛u bi to叩n v th畛nh tho畉ng sai sau khi th畛 hi畛n c叩c ph辿p to叩n crossover and/or mutation.
  • 12. Bi to叩n Knapsack 01 Encoding: 0 = not exist, 1 = exist in the Knapsack Chromosome: 1010110 => Items taken: 1, 3 , 5, 6. Generate random population of n chromosomes: 0101010 1100100 0100011 7 6 5 4 3 2 1 Item. 0 1 1 0 1 0 1 Chro n y y n y n y Exist?
  • 13. Permutation Encoding Permutation encoding c坦 th畛 s畛 d畛ng 畛 gi畉i quy畉t c叩c bi to叩n c坦 th畛 t畛 nh動: Ng動畛i b叩n hng Trong permutation encoding, t畉t c畉 c叩c NST l chu畛i c叩c s畛 bi畛u di畛n v畛 tr鱈 trong m畛t d達y. NST A 1 油5 油3 油2 油6 油4 油7 油9 油8 NST B 8油 5 油6 油7 油2 油3 油1 油4 油9 Permutation encoding 動畛c s畛 d畛ng trong c叩c bi to叩n c坦 th畛 t畛. Trong m畛t vi tr動畛ng h畛p, vi畛c hi畛u ch畛nh lai gh辿p v 畛t bi畉n ph畉i th畛c hi畛n 畛 t畉o ra NST ph湛 h畛p
  • 14. Path Representation 5 1 3 2 4 14 12 11 23 8 10 6 1 5 3 2 4 chromosome (individual) gene
  • 15. Value Encoding VE 動畛c s畛 d畛ng trong c叩c bi t坦an m vi畛c m達 h坦a nh畛 ph但n l kh坦 th畛c hi畛n ( V鱈 d畛 nh動 c叩c bi t坦an m gi叩 tr畛 l c叩c s畛 th畛c). Trong VE m畛i chromosome l m畛t chu畛i c叩c gi叩 tr畛 c坦 th畛 nh畉n d畉ng b畉t k畛 t湛y thu畛c vo t畛ng bi t坦an c畛 th畛. V鱈 d畛 gi叩 tr畛 c坦 th畛 l s畛 th畛c, k箪 t畛, ho畉c m畛t 畛i t動畛ng no 坦. Chromosome A 1.2324 油5.3243 油0.4556 油2.3293 油2.4545 Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT Chromosome C (back), (back), (right), (forward), (left) VE l s畛 l畛a ch畛n t畛t 畛i v畛i m畛t s畛 bi t坦an c畛 th畛. V畛i ki畛u m達 h坦a ny th動畛ng s畉 ph畉i x但y d畛ng m畛t s畛 ph辿p lai gh辿p v 畛t bi畉n cho c叩c bi t坦an c畛 th畛.
  • 16. V鱈 d畛 v畛 m達 h坦a gi叩 tr畛 Bi to叩n: Cho m畉ng n董 ron A c坦 c畉u tr炭c 達 bi畉t. T狸m tr畛ng s畛 gi畛a c叩c neurons trong m畉ng 畛 nh畉n 動畛c k畉t qu畉 ra mong mu畛n. M達 h坦a: Gi叩 tr畛 th畛c trong c叩c chromosome bi畛u di畛n c叩c tr畛ng s畛 trong m畉ng.
  • 17. M達 h坦a d畉ng c但y (Tree Encoding TE ) TE th動畛ng 動畛c s畛 d畛ng trong c叩c bi t坦an ho畉c c叩c bi畛u th畛c suy lu畉n v鱈 d畛 nh動 genetic programming . Trong TE, m畛i chromosome l m畛t c但y g畛m c叩c 畛i t動畛ng nh動 l c叩c hm ho畉c c叩c c但u l畛nh c畛a ng担n ng畛 l畉p tr狸nh. TE th動畛ng 動畛c d湛ng 畛i v畛i c叩c b狸a t坦an suy lu畉n ho畉c c叩c c畉u tr炭c c坦 th畛 bi畛u di畛n b畉ng c但y. C叩c ph辿p lai gh辿p v 畛t bi畉n 畛i v畛i ki畛u m達 h坦a ny c滴ng t動董ng 畛i d畛 th畛c hi畛n. Chromosome A Chromosome B ( + 油x 油( / 油5 油y ) ) ( do_until 油step 油wall )
  • 18. M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
  • 19. Bi to叩n Knapsack 01 Encoding: 0 = not exist, 1 = exist in the Knapsack Chromosome: 1010110 => Items taken: 1, 3 , 5, 6. Generate random population of n chromosomes: 0101010 1100100 0100011 Start 7 6 5 4 3 2 1 Item. 0 1 1 0 1 0 1 Chro n y y n y n y Exist?
  • 20. Bi to叩n TSP 1 5 3 2 4 3 2 4 5 1 2 3 4 1 5 4 5 3 2 1 Population Population size ¥ individual length
  • 21. M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
  • 22. 0101010: Benefit= 19, Weight= 24 1100100: Benefit= 20, Weight= 19. 0100011: Benefit= 21, Weight= 18. Bi to叩n Knapsack 01 Fitness => We select Chromosomes b & c. 7 6 5 4 3 2 1 Item 0 1 0 1 0 1 0 Chro 4 9 7 2 3 8 5 Benefit 4 6 4 10 4 8 7 Weight
  • 23. Bi to叩n TSP f ( indiv d i ( i +1) + d n 1 1 i < n 1 5 3 2 4 3 2 5 1 4 2 3 4 1 5 4 5 3 2 1 58 56 55 57 4 5 3 2 1
  • 24. M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
  • 25. C叩c ki畛u l畛a ch畛n C叩c nhi畛m s畉c th畛 動畛c ch畛n t畛 qu畉n th畛 l c叩c cha cho lai gh辿p (crossover). V畉n 畛 l l畛a ch畛n c叩c nhi畛m s畉c th畛 nh動 th畉 no Theo thuy畉t ti畉n h坦a Darwin's nh畛ng c叩 th畛 t畛t nh畉t s畉 動畛c ch畛n 畛 t畉o ra c叩c con ( offspring ). C坦 nhi畛u ph動董ng ph叩p 畛 ch畛n nhi畛m s畉c th畛 t畛t nh畉t. V鱈 d畛 l roulette wheel selection Boltzman selection tournament selection rank selection steady state selection and many other sometimes weird methods.
  • 26. Roulette Wheel Selection Cha 動畛c ch畛n qua 畛 th鱈ch nghi c畛a ch炭ng Nhi畛m s畉c th畛 t畛t h董n, nhi畛u ng畉u nhi棚n h董n ph畉i 動畛c ch畛n T動畛ng t動畛ng m畛t roulette wheel n董i t畉t c畉 c叩c NST trong qu畉n th畛 動畛c 畉t l棚n K鱈ch th動畛c c畛a o畉n trong roulete wheel t動董ng 畛ng v畛i gi叩 tr畛 c畛a hm th鱈ch nghi M畛t h嘆n bi 動畛c ln trong roulette wheel v NST n董i n坦 d畛ng l畉i 動畛c l畛a ch畛n NST v畛i gi叩 tr畛 th鱈ch nghi l畛n s畉 動畛c ch畛n nhi畛u h董n
  • 27. Rank Selection Roulette Wheel Selection s畉 c坦 v畉n 畛 khi c坦 s畛 kh叩c nhau l畛n gi畛a c叩c 畛 th鱈ch nghi V鱈 d畛: n畉u NST t畛t nh畉t c坦 畛 th鱈ch nghi l 90% th狸 c叩c NST kh叩c r畉t 鱈t c董 h畛i 動畛c l畛a ch畛n Rank selection t鱈nh h畉ng qu畉n th畛 畉u ti棚n v sau 坦 m畛i NST nh畉n l畉i gi叩 tr畛 th鱈ch nghi 動畛c 畛nh ngh挑a b畛i h畉ng c畛a ch炭ng NST t畛i nh畉t s畉 c坦 畛 th鱈ch nghi l 1 , NST t畛i th畛 hai l 2 etc. v NST t畛t nh畉t s畉 c坦 畛 th鱈ch nghi l N (number of chromosomes in population).
  • 28. Roulette Wheel Selection Ti畉n tr狸nh tr棚n c坦 th畛 動畛c m担 t畉 b畛i thu畉t to叩n sau: 1. [Sum] Calculate the sum ( S ) of all chromosome fitnesses in population . 2. [Select] Generate random number (r) from the interval (0,S) . 3. [Loop] Go through the population and start summing the fitnesses from 0 S (call this C). When C is greater then r , stop and return the chromosome where you are.
  • 29. Rank Selection Tr畉ng th叩i s畉 thay 畛i sau khi 畛 th鱈ch nghi s畉 動畛c thay 畛i b畛i rank Situation before ranking (graph of fitnesses) Situation after ranking (graph of order numbers) B但y gi畛 t畉t c畉 c叩c NST s畉 c坦 m畛t s畛 ng畉u nhi棚n 畛 l畛a ch畛n
  • 30. Steady-State Selection Trong t畉t c叩c th畉 h畛 s畉 c坦 m畛t vi NST t畛t (V畛i 畛 th鱈ch nghi cao) 動畛c ch畛n 畛 t畉o NST con m畛i. M畛t vi NST t畛i (v畛i 畛 th鱈ch nghi th畉p) s畉 b畛 x坦a b畛 v c叩c NST con m畛i s畉 thay th畉 ch畛 c畛a ch炭ng. Ph畉n c嘆n l畉i c畛a qu畉n th畛 t畉o ra th畉 h畛 m畛i.
  • 31. M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
  • 32. Crossover and Mutation Crossover and mutation l hai ph辿p to叩n c董 b畉n c畛a thu畉t to叩n gen S畛 thi hnh thu畉t to叩n Gen ph畛 thu畛c r畉t nhi畛u vo crossover v mutation Ki畛u v s畛 th畛 hi畛n c畛a c叩c to叩n t畛 ny ph畛 thu畛c vo ki畛u m達 h坦a v c滴ng ph畛 thu畛c vo bi to叩n C坦 nhi畛u c叩ch 畛 th畛c hi畛n to叩n t畛 crossover v mutation.
  • 33. Crossover for Binary Encoding Single point crossover m畛t i畛m crossover 動畛c l畛a ch畛n, chu畛i nh畛 ph但n t畛 b畉t 畉u c畛a NST t畛i i畛m crossover 動畛c sao ch辿p t畛 cha 1, ph畉n cu畛i 動畛c sao ch辿p t畛 cha c嘆n l畉i 11001 011+11011 111 = 11001111
  • 34. Two point crossover Hai i畛m crossover 動畛c ch畛n M畛t chu畛i nh畛 ph但n t畛 b畉t 畉u c畛a NST t畛i i畛m crossover 畉u ti棚n 動畛c sao ch辿p t畛 cha th畛 nh畉t, ph畉n t畛 i畛m 畉u ti棚n t畛i i畛m th畛 hai crossover 動畛c sao ch辿p t畛 cha th畛 hai v ph畉n cu畛i 動畛c sao ch辿p t畛 cha 畉u ti棚n 11 0010 11 + 11 0111 11 = 11011111
  • 35. Crossover for Binary Encoding Uniform crossover - C叩c bit 動畛c sao ch辿p ng畉u nhi棚n t畛 cha th畛 nh畉t ho畉c cha th畛 hai Arithmetic crossover M畛t ph辿p to叩n 動畛c th畛c hi畛n 畛 t畉o ra con m畛i (new offspring) 11001011 + 11011111 = 11001001 (LOGICAL AND)
  • 36. Mutation for Binary Encoding 畉o bit ch畛n c叩c bits v 畉o ng動畛c gi叩 tr畛 c畛a ch炭ng 1 1 001001 => 油1 0 001001
  • 37. Crossover for Permutation Encoding Single point crossover l畛a ch畛n m畛t i畛m 畛 lai gh辿p, the permutation 動畛c sao ch辿p t畛 i畛m 畉u ti棚n 畉n i畛m lai gh辿p, sau 坦 cha c嘆n l畉i 動畛c duy畛t qua t畛ng s畛 v n畉u s畛 坦 ch動a c坦 trong con, n坦 動畛c th棚m theo th畛 t畛 c畛a NST th畛 hai ( 1 2 3 4 5 | 6 7 8 9) + (4 5 3 6 2 9 1 7 8 ) = ( 1 2 3 4 5 6 9 7 8) Note: c坦 nhi畛u c叩ch 畛 t畉o ra ph畉n sau i畛m lai gh辿p
  • 38. Crossover for Permutation Encoding two point crossover 畉u ti棚n, ch畛n hai i畛m c畉t, bi畛u th畛 b畛i d畉u |, i畛m c畉t ny 動畛c chen vo m畛t c叩ch ng畉u nhi棚n vo c湛ng m畛t v畛 tr鱈 c畛a m畛i m畉u cha m畉.
  • 39. V鱈 d畛 : - C坦 hai m畉u cho m畉 p1 v p2, v畛i c叩c i畛m c畉t sau thnh ph畛 th畛 ba v th畛 b畉y p1 = (1 9 2 | 4 6 5 7 | 8 3) p2 = (4 5 9 | 1 8 7 6 | 2 3) - Hai m畉u con c1 v c2 s畉 動畛c sinh ra theo c叩ch sau. 畉u ti棚n, c叩c o畉n gi畛a hai i畛m c畉t s畉 動畛c ch辿p vo c叩c m畉u con: c1 = (x x x | 4 6 5 7 | x x) c2 = (x x x | 1 8 7 6 | x x)
  • 40. - B動畛c k畉 ti畉p l b畉t 畉u t畛 i畛m c畉t th畛 hai c畛a m畛t trong hai m畉u cha m畉, n畉u ta ang mu畛n hon t畉t m畉u c1, th狸 ta s畉 b畉t 畉u t畛 i畛m c畉t th畛 hai c畛a m畉u p2, ta ch辿p c叩c thnh ph畛 t畛 i畛m c畉t ny theo th畛 t畛 vo c叩c ch畛 c嘆n tr畛ng c畛a c1, b畛 qua nh畛ng thnh ph畛 m c1 達 c坦. Khi 畉n cu畛i m畉u p2, th狸 quay l畉i 畉u m畉u p2 ti畉p t畛c ch辿p sang c1 cho 畉n khi c1 畛.
  • 41.
  • 42. Mutation of Permuation Encoding Order changing hai i畛m 動畛c l畛a ch畛n v thay 畛i (1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7)
  • 43. Lai gh辿p 畛i v畛i m達 h坦a gi叩 tr畛 C坦 th畛 s畛 d畛ng c叩c lai gh辿p nh動 ki畛u m達 h坦a nh畛 ph但n V鱈 d畛: (back), (back), (right), (forward), (left) (right), (back), (left), (back), (forward ) => (back), (back), (left), (back), (forward )
  • 44. 畛t bi畉n 畛i v畛i m達 h坦a gi叩 tr畛 C畛ng vo ho畉c tr畛 i m畛t s畛 nh畛 t畛 c叩c gi叩 tr畛 達 動畛c ch畛n V鱈 d畛: (1.29 油5.68 油 2.86 油 4.11 油5.55) => (1.29 油5.68 油 2.73 油 4.22 油5.55)
  • 45. Crossover for Tree Encoding Tree crossover M畛t i畛m 畛t bi畉n 動畛c ch畛n trong c畉 hai cha, c叩c cha 動畛c ph但n chia b畛i i畛m 畛t bi畉n v nh畛ng ph畉n sau i畛m 畛t bi畉n 動畛c thay 畛i 畛 t畉o ra c叩c con
  • 46. 畛t bi畉n 畛i v畛i m達 h坦a d畉ng c但y
  • 47. Crossover and Mutation Probability C坦 hai tham s畛 c董 b畉n c畛a c叩c thu畉t to叩n gen - x叩c su畉t crossover v x叩c su畉t mutation Crossover probability : m畛c 畛 th動畛ng xuy棚n crossover 動畛c th畛c hi畛n N畉u kh担ng c坦 crossover, offspring 動畛c sao ch辿p ch鱈nh x叩c t畛 cha m畉. N畉u c坦 crossover, offspring con 動畛c t畉o ra t畛 m畛t ph畉n c畛a NST cha N畉u x叩c su畉t l 100% , th狸 t畉t c畉 offspring 動畛c t畉o ra b畛i crossover. N畉u l 0% , th畉 h畛 m畛i t畉o ra b畉ng c叩ch sao ch辿p nguy棚n c叩c NST c畛a th畉 h畛 c滴 Crossover hy v畛ng t畉o ra c叩c NST m畛i s畉 ch畛a ph畉n t畛t c畛a c叩c NST c滴 v nh動 v畉y NST m畛i s畉 t畛t h董n
  • 48. Mutation Probability Mutation probability : M畛c 畛 th動畛ng xuy棚n c畛a c叩c ph畉n s畉 動畛c 畛t bi畉n N畉u kh担ng c坦 mutation, offspring sinh ra s畉 gi畛ng sau khi crossover (or directly copied) N畉u mutation 動畛c th畛c hi畛n,m畛t hay nhi畛u ph畉n c畛a NST s畉 動畛c thay 畛i N畉u x叩c su畉t l 100% , th狸 NST s畉 動畛c thay 畛i, n畉u l 0% , kh担ng c坦 thay 畛i g狸 Mutation sinh ra 畛 tr叩nh thu畉t to叩n gen r董i vo c畛c tr畛 畛a ph動董ng Mutation should not occur very often, because then the genetic algorithm will change to a random search .
  • 49. M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
  • 50. M達 h坦a (encoding) Kh畛i t畉o qu畉n th畛(innitial population generation ) Hm th鱈ch nghi (fitness Function) L畛a ch畛n cho s畛 k畉t h畛p l畉i (Selection for recombination) Lai gh辿p (Crossover) 畛t bi畉n (Mutation) Chi畉n l動畛c thay th畉 (Replacement Strategy) Ti棚u chu畉n k畉t th炭c (Termination Criteria) C叩c thnh ph畉n c董 b畉n c畛a GAs
  • 51. Thu畉t to叩n d畛ng khi qu畉n th畛 h畛i t畛, i.e. c叩 th畛 t畛t nh畉t trong qu畉n th畛 gi畛ng v畛i k畉t qu畉 mong mu畛n K畉t th炭c khi s畛 th畉 h畛 sinh ra 畉t 畉n s畛 sinh ra tr動畛c K畉t th炭c khi c叩c c畉 th畛 tr畛 l棚n gi畛ng nhau K畉t th炭c khi c叩 th畛 t畛t nh畉t trong qu畉n th畛 kh担ng thay 畛i theo th畛i gian Termination Criteria
  • 52. General Recommendations for Genetic Algorithms Th畛 nghi畛m thu畉t to叩n gen cho bi to叩n c畛 th畛, b畛i v狸 kh担ng c坦 l箪 thuy畉t chung c坦 th畉 lm h畛p c叩c tham s畛 c畛a thu畉t to叩n gen cho b畉t c畛 bi to叩n no S畛 gi畛i thi畛u th動畛ng l k畉t qu畉 vi畛c h畛c kinh nghi畛m c畛a thu畉t to叩n gen, c叩i th動畛ng th畛c hi畛n ch畛 tr棚n m達 h坦a nh畛 ph但n
  • 53. Recommendations for Genetic Algorithms Crossover rate T畛c 畛 lai gh辿p th動畛ng l cao, kho畉ng 80%-95% . (M畉c d湛 v畉y m畛t vi k畉t qu畉 cho m畛t vi bi to叩n, t畛c 畛 lai gh辿p kho畉ng 60% l t畛t nh畉t.) Mutation rate X叩c su畉t 畛t bi畉n th動畛ng l r畉t th畉p. T畛c 畛 t畛t nh畉t kho畉ng 0.5%-1% . Population size K鱈ch th動畛c qu畉n th畛 r畉t l畛n th動畛ng kh担ng c畉i ti畉n t畛c 畛 c畛a thu畉t to叩n gen (in the sense of speed of finding solution). K鱈ch th動畛c t畛t kho畉ng 20-30 , M畉c d湛 m畛t vi tr動畛ng h畛p kho畉ng 50-100 th狸 t畛t h董n. Nghi棚n c畛u th畉y r畉ng k鱈ch th動畛c c畛a qu畉n th畛 ph畛 thu畛c vo k鱈ch th動畛c c畛a chu畛i m達 h坦a (chromosomes). N畉u c坦 NST 32 bits, th狸 k鱈ch th動畛c qu畉n th畛 n棚n cao h董n 16
  • 54. Recommendations for Genetic Algorithms Selection roulette wheel selection c坦 th畉 動畛c s畛 d畛ng, nh動ng th畛nh tho畉ng rank selection c坦 th畛 t畛t h董n There are also some more sophisticated methods that change parameters of selection during the running of a genetic algorithm. Elitism should be used if you do not use any other method for saving the best solutions. Encoding Ph畛 thu畛c vo bi to叩n Crossover and mutation type Ph畛 thu畛c vo m達 h坦a v bi to叩n
  • 55. 働u i畛m 働u i畛m ch鱈nh l kh畉 nng song song c畛a thu畉t to叩n Gas duy畛t qua kh担ng gian t狸m ki畉m s畛 d畛ng nhi畛u c叩 th畛 (and with genotype rather than phenotype) v 鱈t m畉c ph畉i c畛c tr畛 畛a ph動董ng nh動 c叩c thu畉t to叩n kh叩c D畛 th畛 hi畛n Khi 達 c坦 thu畉t to叩n gen c董 b畉n, ch畛 c畉n vi畉t m畛t NST m畛i (just one object) 畛 x畛 l箪 bi to叩n kh叩c V畛i c湛ng c叩ch m達 h坦a b畉n c坦 th畛 thay 畛i hm th鱈ch nghi M畉c d湛 v畉y, trong m畛t s畛 tr動畛ng h畛p ch畛n v th畛 hi畛n m達 h坦a s畉 g畉p kh坦 khn
  • 56. Nh動畛c i畛m Nh動畛c i畛m ch鱈nh c畛a Gas l th畛i gian t鱈nh to叩n GAs c坦 th畛 ch畉m h董n c叩c thu畉t to叩n kh叩c C坦 th畛 k畉t th炭c t鱈nh to叩n b畉t c畛 l炭c no,