際際滷

際際滷Share a Scribd company logo
WELCOME
Contents Definition Why study Computer Vision Origin of Computer Vision Goal of Computer Vision Connections to other disciplines Vision Levels Applications
Computer Vision
``to know what is where, by looking. (Marr). Where What VISION
Vision as a source of semantic information
Object categorization sky building flag wall banner bus cars bus face street lamp
Scene and context categorization outdoor city traffic
Qualitative spatial information slanted rigid moving object horizontal vertical rigid moving object non-rigid moving object
Definition Computer vision is the science and technology of machines of obtaining models, meaning and control information from visual data. As a scientific discipline, computer vision is concerned with the theory.
油 The two main fields of computer vision are computational vision and machine vision. 油Computational vision has to do with simply recording and analyzing the visual perception, and trying to understand it. 油Machine vision has to do with using what is found from computational vision and applying it to benefit people, animals, environment, etc .
Why study computer vision? Images and video are everywhere! Personal photo albums Surveillance and security Movies, news, sports Medical and scientific images
Why study computer vision? Vision is useful Vision is interesting Vision is difficult Half of primate cerebral cortex is devoted to visual processing Achieving human-level visual perception is probably AI-complete
Origins of computer vision L. G. Roberts,  Machine Perception of Three Dimensional Solids,  Ph.D. thesis, MIT Department of Electrical Engineering, 1963.
The goal of computer vision To perceive the world behind the picture 153  156  148  152  149  147  139  146  142  150  146  144  137  125  120  119  136  146  151  164  172  175  183  188  196  200  205  208  214  214  219  217 159  151  150  148  140  138  139  129  119  104  86  82  89  97  107  115  118  130  128  132  128  144  160  168  179  188  200  208  213  220  212  214 149  146  153  147  147  146  132  99  73  78  87  96  105  120  138  151  145  157  163  171  165  161  146  126  157  184  190  201  215  212  214  214 145  150  154  148  148  126  93  67  72  78  96  107  117  127  131  134  127  154  166  167  183  194  200  195  143  140  175  190  197  203  206  207 151  153  151  147  120  85  67  75  84  83  94  92  81  78  78  91  83  117  126  144  178  200  201  203  208  175  127  159  185  196  195  206 146  144  139  123  79  66  74  83  79  69  64  62  58  50  46  54  54  66  60  80  86  108  141  191  184  200  187  123  144  175  198  199 135  130  115  87  64  77  90  79  78  85  81  63  55  57  56  53  70  62  61  68  59  58  84  105  168  194  196  183  131  151  185  197 128  116  92  71  82  94  103  101  83  101  88  66  70  90  80  42  39  53  88  73  76  82  116  87  97  144  188  195  190  166  171  203 135  120  84  83  108  127  135  115  100  92  79  49  85  74  59  0  0  0  50  69  52  79  157  141  100  84  136  187  206  204  189  200 144  103  91  115  139  147  127  91  87  80  72  44  61  84  25  0  0  0  50  181  45  69  142  164  167  113  93  130  193  199  208  203 139  102  123  143  137  131  109  85  93  84  68  47  77  86  31  0  3  0  51  156  53  75  141  169  199  151  171  108  143  181  199  208 141  135  153  142  114  104  97  97  83  98  77  42  77  96  79  21  0  23  58  46  56  77  155  199  212  161  194  193  164  187  202  205 160  172  164  141  128  112  98  95  100  96  91  73  68  86  75  73  64  65  54  69  77  115  190  212  193  181  174  188  210  194  202  207 179  189  160  140  139  116  97  97  108  103  110  99  75  80  72  83  50  55  54  95  98  174  205  185  179  188  185  190  193  217  217  224 189  183  152  130  121  105  105  117  114  108  107  115  110  81  85  85  87  81  81  124  183  202  175  180  178  171  173  204  225  215  219  225 178  161  149  135  120  115  122  129  137  145  131  121  125  115  109  91  92  111  132  159  173  170  184  176  184  190  191  217  210  226  228  223 187  159  139  127  125  115  118  121  121  131  133  134  140  137  134  139  140  152  141  154  170  163  195  194  176  198  216  209  219  224  223  226 185  164  140  122  116  110  109  108  113  118  115  116  123  127  135  148  154  162  165  170  171  160  183  198  201  210  223  216  221  222  221  226 188  175  150  130  118  117  113  110  108  115  117  123  130  132  138  150  157  158  174  182  189  186  198  221  224  221  227  221  223  218  218  222 187  179  158  141  124  127  125  127  126  129  130  135  139  141  150  165  175  172  185  195  207  210  212  226  229  222  224  224  223  218  219  221 188  184  172  159  138  135  135  143  143  143  144  146  145  147  160  174  184  191  199  207  211  213  217  224  227  223  223  221  221  218  224  223 192  191  187  174  153  139  140  147  146  149  157  162  160  159  165  174  181  198  201  210  212  216  223  224  225  225  220  215  217  215  224  224
The goal of computer vision To perceive the world behind the picture What exactly does this mean? Vision as a source of metric 3D information Vision as a source of semantic information
Connections to other disciplines Computer Vision Image Processing Machine Learning Artificial Intelligence Robotics Psychology Neuroscience Computer Graphics
  Artificial Intelligence ... uses computer vision to recognize handwriting text and drawings . The Robocup tournament and ASIMO are examples of Artificial Intelligence using Computer Vision to its greatest extent. Artificial Intelligence
油
油
Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to learn based on data, such as from  sensor  data or  databases . Machine Learning
Psychology Neuroscience A braincomputer interface (BCI), sometimes called a direct neural interface or a brainmachine interface, is a direct communication pathway between a  brain  and an external device.
油
Image Processing A digital image is produced by one or several  image sensors , which, besides various types of light-sensitive cameras, include range sensors, tomography devices, radar, ultra-sonic cameras, etc. Depending on the type of sensor, the resulting image data is an ordinary 2D image, a 3D volume, or an image sequence .
image processing brings some new concepts  such as  connectivity  and  rotational invariance   that are meaningful or useful only for two-dimensional signals .
Vision as measurement device Real-time stereo Structure from motion NASA Mars Rover Pollefeys et al. Multi-view stereo for community photo collections Goesele et al.
Iphone sloves Rubiks cube cube cheater
Computer  Graphics Computer graphics are  graphics created using computers and, more generally, the representation and manipulation of pictorial data by a computer. It has revolutionized the animation and video game industry.
油
A 2D projection of a 3D projection of a 4D
Robotics Mobile machines with power, sensing, and computing on-board. Works on Land (on and under) Water (ditto) Air Space ???
Robos on Land Robos on water
Robos on Air
Robo On space
油
Vision Levels Early vision: Image formation and processing Mid-level vision: Grouping and fitting Multi-view geometry Recognition Advanced topics
I. Early vision Basic image formation and processing Cameras and sensors Light and color Linear filtering Edge detection * = Feature extraction: corner and blob detection
II. Mid-level vision Fitting and grouping Fitting: Least squares Hough transform RANSAC Alignment
III. Multi-view geometry Projective structure from motion: Here be dragons! Stereo Affine structure from motion  Tomasi & Kanade (1993) Epipolar geometry
IV. Recognition Patch description and matching Clustering and visual vocabularies Bag-of-features models Classification
V. Advanced Topics Time permitting Segmentation Articulated models Face detection Motion and tracking
Applications of computer vision Driver assistance (collision warning, lane departure  warning, rear object detection) Factory inspection Monitoring for safety (Poseidon) Reading license plates, checks, ZIP codes Surveillance Autonomous driving, robot navigation
Applications of computer vision Assistive technologies Entertainment (Sony EyeToy) Movie special effects Digital cameras (face detection for setting focus,  exposure) Visual search (MSR Lincoln)
Challenges:  local ambiguity slide credit: Fei-Fei, Fergus & Torralba
THANK YOU

More Related Content

H Vijayalakshmi

  • 2. Contents Definition Why study Computer Vision Origin of Computer Vision Goal of Computer Vision Connections to other disciplines Vision Levels Applications
  • 4. ``to know what is where, by looking. (Marr). Where What VISION
  • 5. Vision as a source of semantic information
  • 6. Object categorization sky building flag wall banner bus cars bus face street lamp
  • 7. Scene and context categorization outdoor city traffic
  • 8. Qualitative spatial information slanted rigid moving object horizontal vertical rigid moving object non-rigid moving object
  • 9. Definition Computer vision is the science and technology of machines of obtaining models, meaning and control information from visual data. As a scientific discipline, computer vision is concerned with the theory.
  • 10. 油 The two main fields of computer vision are computational vision and machine vision. 油Computational vision has to do with simply recording and analyzing the visual perception, and trying to understand it. 油Machine vision has to do with using what is found from computational vision and applying it to benefit people, animals, environment, etc .
  • 11. Why study computer vision? Images and video are everywhere! Personal photo albums Surveillance and security Movies, news, sports Medical and scientific images
  • 12. Why study computer vision? Vision is useful Vision is interesting Vision is difficult Half of primate cerebral cortex is devoted to visual processing Achieving human-level visual perception is probably AI-complete
  • 13. Origins of computer vision L. G. Roberts, Machine Perception of Three Dimensional Solids, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.
  • 14. The goal of computer vision To perceive the world behind the picture 153 156 148 152 149 147 139 146 142 150 146 144 137 125 120 119 136 146 151 164 172 175 183 188 196 200 205 208 214 214 219 217 159 151 150 148 140 138 139 129 119 104 86 82 89 97 107 115 118 130 128 132 128 144 160 168 179 188 200 208 213 220 212 214 149 146 153 147 147 146 132 99 73 78 87 96 105 120 138 151 145 157 163 171 165 161 146 126 157 184 190 201 215 212 214 214 145 150 154 148 148 126 93 67 72 78 96 107 117 127 131 134 127 154 166 167 183 194 200 195 143 140 175 190 197 203 206 207 151 153 151 147 120 85 67 75 84 83 94 92 81 78 78 91 83 117 126 144 178 200 201 203 208 175 127 159 185 196 195 206 146 144 139 123 79 66 74 83 79 69 64 62 58 50 46 54 54 66 60 80 86 108 141 191 184 200 187 123 144 175 198 199 135 130 115 87 64 77 90 79 78 85 81 63 55 57 56 53 70 62 61 68 59 58 84 105 168 194 196 183 131 151 185 197 128 116 92 71 82 94 103 101 83 101 88 66 70 90 80 42 39 53 88 73 76 82 116 87 97 144 188 195 190 166 171 203 135 120 84 83 108 127 135 115 100 92 79 49 85 74 59 0 0 0 50 69 52 79 157 141 100 84 136 187 206 204 189 200 144 103 91 115 139 147 127 91 87 80 72 44 61 84 25 0 0 0 50 181 45 69 142 164 167 113 93 130 193 199 208 203 139 102 123 143 137 131 109 85 93 84 68 47 77 86 31 0 3 0 51 156 53 75 141 169 199 151 171 108 143 181 199 208 141 135 153 142 114 104 97 97 83 98 77 42 77 96 79 21 0 23 58 46 56 77 155 199 212 161 194 193 164 187 202 205 160 172 164 141 128 112 98 95 100 96 91 73 68 86 75 73 64 65 54 69 77 115 190 212 193 181 174 188 210 194 202 207 179 189 160 140 139 116 97 97 108 103 110 99 75 80 72 83 50 55 54 95 98 174 205 185 179 188 185 190 193 217 217 224 189 183 152 130 121 105 105 117 114 108 107 115 110 81 85 85 87 81 81 124 183 202 175 180 178 171 173 204 225 215 219 225 178 161 149 135 120 115 122 129 137 145 131 121 125 115 109 91 92 111 132 159 173 170 184 176 184 190 191 217 210 226 228 223 187 159 139 127 125 115 118 121 121 131 133 134 140 137 134 139 140 152 141 154 170 163 195 194 176 198 216 209 219 224 223 226 185 164 140 122 116 110 109 108 113 118 115 116 123 127 135 148 154 162 165 170 171 160 183 198 201 210 223 216 221 222 221 226 188 175 150 130 118 117 113 110 108 115 117 123 130 132 138 150 157 158 174 182 189 186 198 221 224 221 227 221 223 218 218 222 187 179 158 141 124 127 125 127 126 129 130 135 139 141 150 165 175 172 185 195 207 210 212 226 229 222 224 224 223 218 219 221 188 184 172 159 138 135 135 143 143 143 144 146 145 147 160 174 184 191 199 207 211 213 217 224 227 223 223 221 221 218 224 223 192 191 187 174 153 139 140 147 146 149 157 162 160 159 165 174 181 198 201 210 212 216 223 224 225 225 220 215 217 215 224 224
  • 15. The goal of computer vision To perceive the world behind the picture What exactly does this mean? Vision as a source of metric 3D information Vision as a source of semantic information
  • 16. Connections to other disciplines Computer Vision Image Processing Machine Learning Artificial Intelligence Robotics Psychology Neuroscience Computer Graphics
  • 17. Artificial Intelligence ... uses computer vision to recognize handwriting text and drawings . The Robocup tournament and ASIMO are examples of Artificial Intelligence using Computer Vision to its greatest extent. Artificial Intelligence
  • 18.
  • 19.
  • 20. Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to learn based on data, such as from sensor data or databases . Machine Learning
  • 21. Psychology Neuroscience A braincomputer interface (BCI), sometimes called a direct neural interface or a brainmachine interface, is a direct communication pathway between a brain and an external device.
  • 22.
  • 23. Image Processing A digital image is produced by one or several image sensors , which, besides various types of light-sensitive cameras, include range sensors, tomography devices, radar, ultra-sonic cameras, etc. Depending on the type of sensor, the resulting image data is an ordinary 2D image, a 3D volume, or an image sequence .
  • 24. image processing brings some new concepts such as connectivity and rotational invariance that are meaningful or useful only for two-dimensional signals .
  • 25. Vision as measurement device Real-time stereo Structure from motion NASA Mars Rover Pollefeys et al. Multi-view stereo for community photo collections Goesele et al.
  • 26. Iphone sloves Rubiks cube cube cheater
  • 27. Computer Graphics Computer graphics are graphics created using computers and, more generally, the representation and manipulation of pictorial data by a computer. It has revolutionized the animation and video game industry.
  • 28.
  • 29. A 2D projection of a 3D projection of a 4D
  • 30. Robotics Mobile machines with power, sensing, and computing on-board. Works on Land (on and under) Water (ditto) Air Space ???
  • 31. Robos on Land Robos on water
  • 34.
  • 35. Vision Levels Early vision: Image formation and processing Mid-level vision: Grouping and fitting Multi-view geometry Recognition Advanced topics
  • 36. I. Early vision Basic image formation and processing Cameras and sensors Light and color Linear filtering Edge detection * = Feature extraction: corner and blob detection
  • 37. II. Mid-level vision Fitting and grouping Fitting: Least squares Hough transform RANSAC Alignment
  • 38. III. Multi-view geometry Projective structure from motion: Here be dragons! Stereo Affine structure from motion Tomasi & Kanade (1993) Epipolar geometry
  • 39. IV. Recognition Patch description and matching Clustering and visual vocabularies Bag-of-features models Classification
  • 40. V. Advanced Topics Time permitting Segmentation Articulated models Face detection Motion and tracking
  • 41. Applications of computer vision Driver assistance (collision warning, lane departure warning, rear object detection) Factory inspection Monitoring for safety (Poseidon) Reading license plates, checks, ZIP codes Surveillance Autonomous driving, robot navigation
  • 42. Applications of computer vision Assistive technologies Entertainment (Sony EyeToy) Movie special effects Digital cameras (face detection for setting focus, exposure) Visual search (MSR Lincoln)
  • 43. Challenges: local ambiguity slide credit: Fei-Fei, Fergus & Torralba