ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
History of internet<br />The history of the Internet starts in the 1950s and 1960s with the development of computers. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular lead to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks.<br />-647705140960<br />In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced. Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) developed the Computer Science Network (CSNET) and again in 1986 when NSFNET provided access to supercomputer sites in the United States from research and education organizations. The ARPANET was decommissioned in 1990. Commercial internet service providers (ISPs) began to emerge in the late 1980s and 1990s and the Internet was commercialized in 1995 when NSFNET was decommissioned, removing the last restrictions on the use of the Internet to carry commercial traffic.<br />right0<br />Internet knowledge<br />??????????????????????<br />The Internet is a global system of interconnected computer networks that use the standard Internet Protocol Suite (TCP/IP) to serve billions of users worldwide. It is a network of networks that consists of millions of private, public, academic, business, and government networks, of local to global scope, that are linked by a broad array of electronic, wireless and optical networking technologies. The Internet carries a vast range of information resources and services, such as the inter-linked hypertext documents of the World Wide Web (WWW) and the infrastructure to support electronic mail.<br />Most traditional communications media including telephone, music, film, and television are reshaped or redefined by the Internet, giving birth to new services such as Voice over Internet Protocol (VoIP) and IPTV. Newspaper, book and other print publishing are adapting to Web site technology, or are reshaped into blogging and web feeds. The Internet has enabled or accelerated new forms of human interactions through instant messaging, Internet forums, and social networking. Online shopping has boomed both for major retail outlets and small artisans and traders. Business-to-business and financial services on the Internet affect supply chains across entire industries.<br />banwidth<br />Bandwidth is the difference between the upper and lower frequencies in a contiguous set of frequencies. It is typically measured in hertz, and may sometimes refer to passband bandwidth, sometimes to baseband bandwidth, depending on context. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, an electronic filter, a communication channel, or a signal spectrum. In case of a low-pass filter or baseband signal, the bandwidth is equal to its upper cutoff frequency. The term baseband bandwidth always refers to the upper cutoff frequency, regardless of whether the filter is bandpass or low-pass.<br />Satellite communications<br />A communications satellite (sometimes abbreviated to COMSAT) is an artificial satellite stationed in space for the purpose of telecommunications. Modern communications satellites use a variety of orbits including geostationary orbits, Molniya orbits, other elliptical orbits and low (polar and non-polar) Earth orbits.<br />For fixed (point-to-point) services, communications satellites provide a microwave radio relay technology complementary to that of communication cables. They are also used for mobile applications such as communications to ships, vehicles, planes and hand-held terminals, and for TV and radio broadcasting, for which application of other technologies, such as cable, is impractical or impossible.<br />Telecommunications and meteorology<br />What is meteorology?<br />Meteorology is the interdisciplinary scientific study of the atmosphere. Studies in the field stretch back millennia, though significant progress in meteorology did not occur until the eighteenth century. The nineteenth century saw breakthroughs occur after observing networks developed across several countries. Breakthroughs in weather forecasting were achieved in the latter half of the twentieth century, after the development of the computer.<br />Meteorological phenomena are observable weather events which illuminate and are explained by the science of meteorology. Those events are bound by the variables that exist in Earth's atmosphere; temperature, air pressure, water vapor, and the gradients and interactions of each variable, and how they change in time. The majority of Earth's observed weather is located in the troposphere.[1][2] Different spatial scales are studied to determine how systems on local, region, and global levels impact weather and climatology. Meteorology, climatology, atmospheric physics, and atmospheric chemistry are sub-disciplines of the atmospheric sciences. Meteorology and hydrology compose the interdisciplinary field of hydrometeorology. Interactions between Earth's atmosphere and the oceans are part of coupled ocean-atmosphere studies. Meteorology has application in many diverse fields such as the military, energy production, transport, agriculture and construction.<br />My survey<br />What would you do without facebook?
What would you do without cell to call someone?
What would you do without bb msn?
What would you do without a laptop?
What would happened if there were no telecommunications?
How often do you enter to facebook?
Answers

More Related Content

History of internet

  • 1. History of internet<br />The history of the Internet starts in the 1950s and 1960s with the development of computers. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular lead to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks.<br />-647705140960<br />In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced. Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) developed the Computer Science Network (CSNET) and again in 1986 when NSFNET provided access to supercomputer sites in the United States from research and education organizations. The ARPANET was decommissioned in 1990. Commercial internet service providers (ISPs) began to emerge in the late 1980s and 1990s and the Internet was commercialized in 1995 when NSFNET was decommissioned, removing the last restrictions on the use of the Internet to carry commercial traffic.<br />right0<br />Internet knowledge<br />??????????????????????<br />The Internet is a global system of interconnected computer networks that use the standard Internet Protocol Suite (TCP/IP) to serve billions of users worldwide. It is a network of networks that consists of millions of private, public, academic, business, and government networks, of local to global scope, that are linked by a broad array of electronic, wireless and optical networking technologies. The Internet carries a vast range of information resources and services, such as the inter-linked hypertext documents of the World Wide Web (WWW) and the infrastructure to support electronic mail.<br />Most traditional communications media including telephone, music, film, and television are reshaped or redefined by the Internet, giving birth to new services such as Voice over Internet Protocol (VoIP) and IPTV. Newspaper, book and other print publishing are adapting to Web site technology, or are reshaped into blogging and web feeds. The Internet has enabled or accelerated new forms of human interactions through instant messaging, Internet forums, and social networking. Online shopping has boomed both for major retail outlets and small artisans and traders. Business-to-business and financial services on the Internet affect supply chains across entire industries.<br />banwidth<br />Bandwidth is the difference between the upper and lower frequencies in a contiguous set of frequencies. It is typically measured in hertz, and may sometimes refer to passband bandwidth, sometimes to baseband bandwidth, depending on context. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, an electronic filter, a communication channel, or a signal spectrum. In case of a low-pass filter or baseband signal, the bandwidth is equal to its upper cutoff frequency. The term baseband bandwidth always refers to the upper cutoff frequency, regardless of whether the filter is bandpass or low-pass.<br />Satellite communications<br />A communications satellite (sometimes abbreviated to COMSAT) is an artificial satellite stationed in space for the purpose of telecommunications. Modern communications satellites use a variety of orbits including geostationary orbits, Molniya orbits, other elliptical orbits and low (polar and non-polar) Earth orbits.<br />For fixed (point-to-point) services, communications satellites provide a microwave radio relay technology complementary to that of communication cables. They are also used for mobile applications such as communications to ships, vehicles, planes and hand-held terminals, and for TV and radio broadcasting, for which application of other technologies, such as cable, is impractical or impossible.<br />Telecommunications and meteorology<br />What is meteorology?<br />Meteorology is the interdisciplinary scientific study of the atmosphere. Studies in the field stretch back millennia, though significant progress in meteorology did not occur until the eighteenth century. The nineteenth century saw breakthroughs occur after observing networks developed across several countries. Breakthroughs in weather forecasting were achieved in the latter half of the twentieth century, after the development of the computer.<br />Meteorological phenomena are observable weather events which illuminate and are explained by the science of meteorology. Those events are bound by the variables that exist in Earth's atmosphere; temperature, air pressure, water vapor, and the gradients and interactions of each variable, and how they change in time. The majority of Earth's observed weather is located in the troposphere.[1][2] Different spatial scales are studied to determine how systems on local, region, and global levels impact weather and climatology. Meteorology, climatology, atmospheric physics, and atmospheric chemistry are sub-disciplines of the atmospheric sciences. Meteorology and hydrology compose the interdisciplinary field of hydrometeorology. Interactions between Earth's atmosphere and the oceans are part of coupled ocean-atmosphere studies. Meteorology has application in many diverse fields such as the military, energy production, transport, agriculture and construction.<br />My survey<br />What would you do without facebook?
  • 2. What would you do without cell to call someone?
  • 3. What would you do without bb msn?
  • 4. What would you do without a laptop?
  • 5. What would happened if there were no telecommunications?
  • 6. How often do you enter to facebook?
  • 8. I couldn¡¯t be in contact with some friends that live far away from here.
  • 9. I couldn¡¯t call anyone when I need a friend to talk with.
  • 10. I would be so bored all the time.
  • 11. I couldn¡¯t take my computer to many different places.
  • 12. We could¡¯t be in contact with the people of other countries.