Industriell økologi er et ungt fagfelt som søker å forstå hvordan mennesker forårsaker miljøkonsekvenser gjennom å ta i bruk naturressurser og avgi reststoffer som forurensning, og hvordan miljøkonsekvenser kan reduseres gjennom å forandre dette systemet. Industriell økologi baserer seg på systemanalyse og bevaring av materie og energi. Foredraget gi et innblikk i sentrale konsepter og virkelighetsbeskrivelsen som industriell økologi har utviklet. Så introduseres det noen eksempler på forskningsfunn, delvis basert på foredragsholderens egen forskning. Karbonfotspor er en måte å analysere produkters og personers bidrag til klimakrisen. Vi har nå en god forståelse for hvilke forbruksområder bidra hvor mye til klimagassutslipp, og ansvar til ulike befolkninger. Dynamiske inventarmodeller brukes til å modellere samfunnets materialbehov og vurdere muligheter å redusere det.
1 of 27
Download to read offline
More Related Content
Hva er industriell økologi?
1. Hva er industriell økologi?
Edgar Hertwich, NTNU Program for industriell økologi
Gløshaugen Akademisk Klubb
30.11.2023
Kunnskap
for
en
bedre
verden
8. 8
Samfunnets materielle struktur
Mennesker er lagt av materie.
Mennesker bruker artefakter, lagt av materie.
Drift og reproduksjon av et samfunn krever energi og
materialer.
Drift og reproduksjon av et samfunn forårsaker avfall.
Samfunnets stoffskifte: Utveksling av materie og energi
mellom natur og samfunn
9. 9
Industriell økologi
• Søker å forstå samfunnets biofysikalsk struktur og
stoffskiftet.
• Materialflyt og energiflyt
• Inventar av produkter og mulighet til gjenbruk
• Ressursbehov og utslipp knyttet til produksjon og forbruk
• Mulighet å redusere ressursbruk og utslipp gjennom ulike
tiltak
– Nye teknologier
– Forandret bruksmønster
11. Grønne energivalg - Livssyklusanalyse
• Energisektoren den viktigste årsaken til klimautslipp globalt
– 25% av samlede utslipp
– (samme som avskoging og jordbruk til sammen)
– Industri: 21%, Transport: 14%
– Elektrisitet en viktig energibærer fremover
• Andre miljøkonsekvenser ofte trukket frem som et argument
mot fornybar kraftproduksjon
– Utslipp i materialproduksjon
– Uttømming av mineralressurser
– Arealbruk og lokale effekter
Studien sammenstiller miljø for ulike teknologier for
elkraftproduksjon, både per kWh og som del av et globalt
kraftsystem.
11
UNEP (2016): Green Energy Choices
15. International Resource Panel - Resource Efficiency and Climate Change: bit.ly/IRPrecc
@UNEPIRP #ResourceEfficiency4Climate @EdgarHertwich
Klimagassutslipp i et verdikjedeperspektiv
15% 23%
Tre og papir
Jern, stål, aluminium, og
andre metaller
Sement, glass og andre
ikke-metalliske mineraler
Plast og gummi
1995 2015
4.8Gt
4.4Gt
1.5Gt
0.9Gt
11.5 Gt
5 Gt
Total global
49Gt
Total global
35Gt
Materialproduksjon står for 23% av global klimagassutslipp
Hertwich 2021
17. @UNEPIRP #ResourceEfficiency4Climate
Download the report: bit.ly/IRPrecc
Sju strategier til å redusere materialbruk og utslipp vurdert
Designe lettere
produkter
Øke material-
utnyttelsen
Økt resirkulering
Bruke mer
miljøvennlige
materialer
Gjenvinning, ombruk
av deler Forlenget levetid for
produkter
Mer
effektiv
bruk av
produkter
18. IRP rapporten fokusserer på bolig og bil som viktige produkter
0
2
4
6
8
10
12
Final Use
Services
Other
products
Electronics
Vehicles
Metal
products
Machinery
Industries
48
Source: Hertwich (2020)
https://doi.org/10.31235/osf.io/n9ecw
store mengder
materialer
viktige tjenester til
samfunnet
høy økonomisk
verdi
stort potensial for
økt effektivitet
@UNEPIRP #ResourceEfficiency4Climate
Download the report: bit.ly/IRPrecc
19. Strategier for materialeffektivitet kan redusere utslipp knyttet til
produksjon og bruk av bolig i G7 land med 35-40% ved 2050
Materialsyklus
Energibruk
1200Mt
250Mt
2016
utslipp ved
produksjon og
bruk
140 Mt
590 Mt
2050
utslipp uten material-
effektivitet, med lav
energibruk og ren
energi
Reduksjon i
energibruk
Reduksjon i
materialbruk
@UNEPIRP #ResourceEfficiency4Climate
Download the report: bit.ly/IRPrecc
5 Mt
XXGt
460 Mt
120Mt
130Mt
2050
utslipp med
material-effektivitet
35%
utslipp kan
reduseres gjennom
materialeffektivitet.
2-grader scenario
lagt til grunn: økt
andel fornybar
energi og CO2
handtering, økt
energieffektivitet
20. 860 Mt
820Mt
480Mt
300 Mt
Utslippsreduksjon fra boligbygging og bruk i Kina og India i 2050
@UNEPIRP #ResourceEfficiency4Climate
Download the report: bit.ly/IRPrecc
230 Mt
100Mt
70Mt
380Mt
60%
Utslippsreduksjon
gjennom material-
effektivitet
2050
utslipp med
materialeffektivitet
2016
utslipp ved
produksjon og
bruk
2050
utslipp uten material-
effektivitet, med lav
energibruk og ren
energi
Materialsyklus
Energibruk
Reduksjon i
materialbruk
Reduksjon i
energibruk
21. -9
-7
-5
-3
-1
Product lifetime
extension and
reuse
Enhanced end-
of-life recovery
and fabrication
yield
improvments
More intensive
use
Material
substitution
• Lette konstruksjoner
• Tre istedenfor betong
• Mer effektiv
arealutnyttelse
• Økt resirkulering og
redusert avfall
• Forlenget levetid
*Reduksjonspotensialer for
implementering av effektivitet etter hver
andre, begynnende med lettere bygg,
material subsidusjon, og gjenvinning.
klimagassutslipp
(Gt
CO
2
e)
20% reduksjon
Reduksjon av kumulative utslipp gjennom
materialeffektive bolig (2016-2060)
Økt arealutnyttelse reduserer
areal som må oppvarmes eller
klimatiseres
Tre som byggematerial kan øke
energibruk til kjøling og
oppvarming
Noen strategier påvirker
energibruk i bruksfase
Flere strategier reduserer
utslipp i materialsyklus
Økt utnyttelse, økt resirkulering, og bruk av tre som
bygningsmaterial
@UNEPIRP #ResourceEfficiency4Climate
Download the report: bit.ly/IRPrecc
22. 40 Mt
730 Mt
1780 Mt
30 Mt
2016
utslipp ved
produksjon og
bruk
2050
utslipp uten
materialeffektivitet
Materialsyklus
Energibruk
Reduksjon i
energibruk
Reduksjon i
materialbruk
Materialeffektivitet kan redusere utslipp fra produksjon og bruk av biler
med 40% I G7 land i 2050
@UNEPIRP #ResourceEfficiency4Climate
Download the report: bit.ly/IRPrecc
280 Mt
25 Mt
450 Mt
10 Mt
40%
Utslippsreduksjon
gjennom material-
effektivitet
2050
utslipp med
materialeffektivitet
2-grader scenario
lagt til grunn:
transformasjon av
energisystem til lav
utslippsintensitet,
økt bruk av el-bil
og ladbare
hybridbiler
23. 110 Mt
1530 Mt
120 Mt
580 Mt
2016
utslipp ved
produksjon og
bruk
2050
utslipp uten
materialeffektivitet
Material cycle
emissions
Emissions
from
operational
energy use
Operational energy
use emission
reductions
Material cycle
emission reductions
Materialeffektivitet kan redusere utslipp fra produksjon og bruk av biler
med 35% i Kina og India i 2050
@UNEPIRP #ResourceEfficiency4Climate
Download the report: bit.ly/IRPrecc
XXGt
1040 Mt
50 Mt
490 Mt
60 Mt
35%
Utslippsreduksjon
gjennom material-
effektiviet
2050
utslipp med
materialeffektivitet
24. -12
-10
-8
-6
-4
-2
0
Product lifetime
extension and
reuse
Enhanced end-of-
life recovery and
fabrication yield
improvments
Ride-sharing
Car-sharing
Material
substitution
• Mindre størrelse bil bedre
tilpasset til bruksformål
• Materialsubstitusjon
• Bildeling
• Samkjøring
• Økt gjenvinning
• Økt levetid av produktene
*Utslippsreduksjon ved at strategier
er implementert etter hverandre,
begynnende med de mer tekniske
strategier av materialsubstitusjon,
redusert avfall, og økt gjenvinning
Klimagassutslipp
(Gt
CO
2
e)
Ca. 25% reduksjon i
kumulativ utslipp
Reduksjonspotensiale i kumulative utslipp (2016-2060)
Mest lovende strategier til å redusere
utslipp ved produksjon og bruk
Redusere
bilstørrelse
Redusere antall biler
gjennom økt
utnyttelse
Økt utnyttelse og mindre bilstørrelse er viktigst
@UNEPIRP #ResourceEfficiency4Climate
Download the report: bit.ly/IRPrecc
25. @UNEPIRP #ResourceEfficiency4Climate
Download the report: bit.ly/IRPrecc
2016-2060 kumulative utslipp
med energitiltak men uten
materialeffektivitet
2016-2060 kumulative utslipp hvis
materialeffektivitet kommer på
toppen av transformasjon av
energisystemet
92 Gt
72 Gt
20 Gt
Saved
through
Bolig og bil
116 Gt
80 Gt
Bolig og bil
G7 land Kina og India
Reduksjon i kumulative utslipp 20Gt -36Gt
For å begrense oppvarming til 1.5°C, må vi ta i bruk alle strategier for
materialeffektivitet rask og gjennomgående. De må kombineres med andre
strategier som sanering av eksisterende bygg, økt bruk av offentlig kommunikasjon,
raskere innføring av elbil og ren energi, og nye teknologier i produksjon av stål og
sement.
20 Gt
reduskjon
gennom
material-
effektivite
t
36 Gt
reduksjon
gjennom
material-
effektivite
t
26. 26
Industriell økologi anvendelser
• Livssyklusanalyse av bygg og infrastruktur
• Utslippsberegninger for innkjøp
• Klassifisering av næringer for EU taksonomi
• Definisjon av kritiske materiler
• Scenarioanalyse og planlegging
#16: The rationale for this analysis is the overlooked yet very important role of materials for GHG emissions.
1) Materials have become more important as a share of global emissions, growing to over 11Gt and 23% of global emissions in 2015.
11Gt correspond to the share of GHG emissions from agriculture, forestry, and land use change combined, yet they have received much less attention.
Global climate change mitigation efforts have traditionally focused on improving energy efficiency and accelerating the transition to renewables. While this is key, we need to pay greater attention to material efficiency, as without it, it will be nearly impossible and substantially more expensive to keep global warming below 1.5° C.
2) This is also because emissions from materials production are “hard to abate” through energy measures. Electrification of production, for example from iron to steel, is difficult, as is fuel switching and CCS. Better energy efficiency in the production is possible and important but not enough.
3) Therefore, using materials more efficiently down the value chain – i.e. in the material-intense end products – is the most direct measure to reduce emissions.
4) Importantly, the technologies are available today, proven to be safe and create various co-benefits with operational emissions savings, as well as socioeconomic benefits such as better housing or mobility.
#18: So how do we improve system-wide efficiency in these sectors?
7 strategies are important here:
Leaner design or ‘using less material by design’, for example leaner load-bearing structures in buildings
Fabrication yield improvements, the so to day “traditional efficiency” that reduces waste in the manufacturing process or improves scrap reuse
Enhanced end-of-life recovery and recycling of materials means for example the recycling of steel of a discarded car
Product lifetime extension refers to better repair and maintenance of buildings or cars
Remanufacturing and reuse of components prolongs the lifetime of components, in the same or another vehicle or house
More intensive use refers to the overall smarter utilization of a car or house. It means that floor space is used without rooms that are not really being used, or that buildings do not remain empty – which can reduce the total floor space needed in a country without hampering the quality of living. In cars, this means that cars are standing around empty less, and are used by more persons – for example in ride-pooling models.
The questions is – how impactful are these strategies for mitigation in different regional and sector contexts?
#19: With this purpose, the IRP report looks at important material-intense example sectors.
Most materials are used in construction and manufacturing, and within these sectors, private vehicles and residential housing are particularly important, because
They use large amounts of materials
They provide essential services to society
They create high economic value
And they show significant potential for system-wide efficiency increases
#20: Looking at G7 homes, we can see these strategies (all together) can reduce 35% of total housing life-cycle emissions, and can reduce emissions from material production for houses to almost zero.
First, we see the annual emissions of homes in 2016. This is not a scenario, this is the reality today, where both material emissions – here in orange – are significant, as well as emissions from heating and cooling of houses.
Now we look at a scenario in 2050. This scenario assumes a reduced building rate in 2050 in comparison to 2016, as most houses will have been built by then and building is mainly about replacing. Also, this reference scenario includes quite ambitious energy measures, so high action on insulation and clean energy supply. However, even with these measures, the emissions are still over 700Mt in 2050 yearly.
Now we apply material-efficiency strategies on top of those energy measures. And we can see that we can further reduce 35% of the overall emissions, and almost 100% of the remaining material emissions.
#21: If we look at the same sequence in China and India (here aggregated), the total emissions are much higher but the logic is similar.
1) New building today (2016) is very high, and so are emissions.
2) New building will peak some time between 2016 and 2050, so that the annual emissions from materials are lower in 2050 than today. Cooling and heating emissions are substantial, despite ambitious energy measures and transition to clean energy.
3) On top of this scenario in 2050, we now apply the material efficiency strategies, which can significantly reduce material emissions, and operational emissions, too. Overall emissions are more than halved and material emissions are reduced to a fifth of the reference scenario.
#22: As mentioned, the report does not only look at a comparison of 2050 annual emissions scenarios.
It also check what the implications are for emissions from today until 2060.
We can see that cumulatively, the reductions from G7 homes are around 20% through material-efficiency strategies. This of course depends on how fast we start implementing them.
We can also see that more intensive use of homes – i.e. eliminating underutilization of essentially “wasted” space, would save by far the most emissions. Better utilization of space means less need for new building, plus freed materials that could be reused for other purposes – if recycling capabilities are in place.
The use of recycled materials is very important, too, as well as the use of renewable materials such as sustainably sources wood.
Leaner design has less impact in G7 countries where new building need is low, it would have more impact on growing countries like India.
It is interesting to note that most of the strategies predominantly reduce the need for virgin materials and connected emissions. More intensive use can also significantly reduce heating needs, and wood-use can reduce cooling needs.
#23: The model also looks at cars. Here we look at the complete car fleet in the G7.
First we look at the emissions from the fleet today. Material emissions are significant with 30Mt, however appear small in comparison to the massive fuel emissions, here in blue.
In 2050, the reference scenario assumes more electric vehicles and more public transport, so emissions have more than halved. This is already an ambitious scenario of energy measures.
Now we apply the material-efficiency measures on top, and can see that emissions can be further reduced by around 30%. This assumes a high recycling rate, but an intensification of use of only around 40%. Given a ca. 5% car utilization in Europe, utilization could in principle be intensified much more, so savings could look even greater.
#24: In China and India, the picture looks quite different.
1) Today, the vehicle emissions are quite low, mainly determined by a very small number of cars per capita in India.
2) In 2050, this number is expected to grow massively, and emissions with it, despite a quite ambitious rate of electrification.
3) Applying material efficiency measures, the emissions from the total car fleet in India and China would still rise – but much less than in the reference scenario.
The implication is to design and plan an efficient mobility system in these countries today.
#25: When looking at the different strategies and their impacts, it is clear that ride-sharing or also called pooling – for example a shuttle model or “uber-pool” type model, would have massive benefits.
Using cars from shared fleets for individual rides would also be beneficial, and so would using more need-appropriate vehicle sizes. For individual use, this would mean smaller vehicles, for shared use this would mean lean, comfortable cars optimized for their passenger number.
Better recycling and maintenance is important too, and could become more beneficial when more intensive use models require more maintenance and upgrading.
#26: Overall, in this model, all strategies in both sectors together would reduce G7 emissions by 20Gt, i.e. about 20%. In India and China, this would be 36Gt, about 25%.
Given that the ENTIRE carbon budget for G7 countries until 2060 is only 50Gt, these reductions are clearly not enough. Cars alone would emit more that all industries and private consumption can emit together.
Therefore, the modelling provides a good insight into the relative effectiveness of the strategies and their interplay with the assumptions made in the reference scenario.
For 1.5oC, all Material Efficiency Strategies need to be implemented as fast and extensively as possible. These must be combined with other ambitious measures, such as
Deep-energy retrofits of buildings
Shift from private to public transport
Fast introduction of electric vehicles and clean energy
Innovation in low-carbon materials production: Energy efficiency, fuel switch, electrification, CCS