This document summarizes a research article that proposes using a Bayesian classifier to aid in level set segmentation for early detection of diabetic retinopathy. Level set segmentation is used to segment retinal images and detect small blood clots. A Bayesian classifier is applied to help propagate the level set contour and classify pixels as normal blood vessels or abnormal blood clots. The method was tested on retinal images and showed it could detect small clots of 0.02mm, indicating it may help detect early proliferation stages. Results demonstrated it outperformed other methods in detecting minute clots for early stage proliferation detection.