ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
Indexing Delight
   Thinking Cap of Fractal-tree Indexes
                    BohuTANG@2012/12
                 overred.shuttler@gmail.com
B-tree
Invented in 1972, 40 years!
B-tree

                                                                 Block0




                           Block1                                 Block2                                           Block3
                                                ....                                         ....




            Block4                                                                                                                   Block5
                                    .....................................................................................




File on disk:        ...       Block0                  ...             ...           Block3                 ...             Block5     ...
B-tree Insert
                                                               Insert x

                                                                 Block0

                                                                                                          seek



                           Block1                                 Block2                                           Block3
                                                ....                                         ....




            Block4                                                                                                                   Block5
                                    .....................................................................................




File on disk:        ...       Block0                  ...             ...           Block3                 ...             Block5     ...
B-tree Insert
                                                               Insert x

                                                                 Block0

                                                                                                          seek



                           Block1                                 Block2                                           Block3
                                                ....                                         ....

                                                                                                                                     seek



            Block4                                                                                                                   Block5
                                    .....................................................................................




File on disk:        ...       Block0                  ...             ...           Block3                 ...             Block5     ...
B-tree Insert
                                                               Insert x

                                                                 Block0

                                                                                                          seek



                           Block1                                 Block2                                           Block3
                                                ....                                         ....

                                                                                                                                     seek



            Block4                                                                                                                   Block5
                                    .....................................................................................




File on disk:        ...       Block0                  ...             ...           Block3                 ...             Block5     ...



                           Insert one item causes many random seeks!
B-tree Search
                                             Search x

                                                Block0

                                                                                         seek



          Block1                                 Block2                                           Block3
                               ....                                         ....

                                                                                                           seek



 Block4                                                                                                    Block5
                   .....................................................................................




                     Query is fast, I/Os costs O(logBN)
B-tree Conclusions
¡ñ   Search: O(logBN ) block transfers.
¡ñ   Insert: O(logBN ) block transfers(slow).
¡ñ   B-tree range queries are slow.
¡ñ   IMPORTANT:
     --Parent and child blocks sparse in disk.
A Simpli?ed Fractal-tree
Cache Oblivious Lookahead Array, invented by MITers
COLA


                                        log2N




           ...........


Binary Search in one level:O(log2N) 2
COLA (Using Fractional Cascading)


                                                      log2N




         ...........


¡ñ   Search: O(log2N) block transfers.
¡ñ   Insert: O((1/B)log2N) amortized block transfers.
¡ñ   Data is stored in log2N arrays of sizes 2, 4, 8, 16,..
¡ñ   Balanced Binary Search Tree
COLA Conclusions

¡ñ Search: O(log2N) block transfers(Using Fractional
  Cascading).
¡ñ Insert: O((1/B)log2N) amortized block transfers.
¡ñ Data is stored in log2N arrays of sizes 2, 4, 8, 16,..
¡ñ Balanced Binary Search Tree
¡ñ Lookahead(Prefetch), Data-Intensive!
¡ñ BUT, the bottom level will be big and bigger,
  merging expensive.
COLA vs B-tree
¡ñ Search:
  -- (log2N)/(logBN)
     = log2B times slower than B-tree(In theory)
¡ñ Insert:
  --(logBN)/((1/B)log2N)
     = B/(log2B) times faster than B-trees(In theory)
if B = 4KB:
      COLA search is 12 times slower than B-tree
      COLA insert is 341 times faster than B-tree
LSM-tree
LSM-tree
                                                       In memory
                                 buffer



               buffer             ...                    buffer



      buffer     ...    buffer          ...   buffer        ...    buffer




¡ñ   Lazy insertion, Sorted before
¡ñ   Leveli is the buffer of Leveli+1
¡ñ   Search: O(logBN) * O(logN)
¡ñ   Insert:O((logBN)/B)
LSM-tree (Using Fractional Cascading)
                                                     In memory
                               buffer



             buffer             ...                    buffer



    buffer     ...    buffer          ...   buffer        ...    buffer




¡ñ Search: O(logBN) (Using FC)
¡ñ Insert:O((logBN)/B)
¡ñ 0.618 Fractal-tree?But NOT Cache Oblivious...
LSM-tree (Merging)
                                                           In memory
                                 buffer



             buffer               ...                        buffer
   merge              merge                   merge

    buffer     ...      buffer          ...       buffer        ...        buffer




A lot of I/O wasted during merging!
Like a headless fly flying...                                          Zzz...
Fractal-tree Indexes
Just Fractal. Patented by Tokutek...
Fractal-tree Indexes




Search: O(logBN) Insert: O((logBN)/B) (amortized)
Search is same as B-tree, but insert faster than B-tree
Fractal-tree Indexes (Block size)



                    ....


            ....     ....    ....




               B is 4MB...
Fractal-tree Indexes (Block size)


                    full


                     ....


            ....      ....   ....




               B is 4MB...
Fractal-tree Indexes (Block size)



            full     ....


            ....      ....   ....




                   B is 4MB...
Fractal-tree Indexes (Block size)

                                    ..

                            ..      ..         ..



                full




           ..                    ... ... ...             ..

      ..   ..          ..                           ..   ..   ..




           Fractal! 4MB one seek...
¦Å
B -tree
Just a constant factor on Block fanout...
¦Å
B -tree
             B-tree
      Fast                                ¦Å=1/2



 Search




      Slow
                                                  AOF
              Slow
                                                   Fast
                      Inserts


                          Optimal Curve
¦Å
B -tree

                          insert            search

        B-tree           O(logBN)          O(logBN)
        (?=1)

        ?=1/2         O((logBN)/¡ÌB)        O(logBN)

         ?=0            O((logN)/B)         O(logN)


 if we want optimal point queries + very fast inserts, we
 should choose ?=1/2
¦Å
B -tree




     So, if block size is B, the fanout should be ¡ÌB
Cache Oblivious Data
Structure
All the above is JUST Cache Oblivious Data Structures...
Cache Oblivious Data Structure
Question:
   Reading a sequence of k consecutive blocks
at once is not much more expensive than
reading a single block. How to take advantage
of this feature?
Cache Oblivious Data Structure
My Questions(In Chinese):
Q1£º
  Ö»ÓÐ1MBÄڴ棬ÔõÑù°ÑÁ½¸ö64MBÓÐÐòÎļþºÏ
²¢³ÉÒ»¸öÓÐÐòÎļþ£¿

Q2£º
  ´ó¶àÊý»úе´ÅÅÌ£¬Á¬Ðø¶ÁÈ¡¶à¸öBlockºÍ¶ÁÈ¡
µ¥¸öBlock»¨·ÑÏà²î²»´ó£¬ÔÚQ1ÖÐÈçºÎÀûÓÃÕâ¸ö
ÓÅÊÆ£¿
nessDB
You should agree that VFS do better than yourself cache!
https://github.com/shuttler/nessDB
nessDB


             ..         ... ... ...        ..

     ..      ..   ..                  ..   ..   ..




          Each Block is Small-Splittable Tree
nessDB, What's going on?

                             ..

                     ..      ..         ..




         ..               ... ... ...             ..

    ..   ..     ..                           ..   ..   ..




              From the line to the plane..
Thanks!
Most of the references are from:
Tokutek & MIT CSAIL & Stony Brook.

Drafted By BohuTANG using Google Drive, @2012/12/12

More Related Content

Indexing delight --thinking cap of fractal-tree indexes

  • 1. Indexing Delight Thinking Cap of Fractal-tree Indexes BohuTANG@2012/12 overred.shuttler@gmail.com
  • 3. B-tree Block0 Block1 Block2 Block3 .... .... Block4 Block5 ..................................................................................... File on disk: ... Block0 ... ... Block3 ... Block5 ...
  • 4. B-tree Insert Insert x Block0 seek Block1 Block2 Block3 .... .... Block4 Block5 ..................................................................................... File on disk: ... Block0 ... ... Block3 ... Block5 ...
  • 5. B-tree Insert Insert x Block0 seek Block1 Block2 Block3 .... .... seek Block4 Block5 ..................................................................................... File on disk: ... Block0 ... ... Block3 ... Block5 ...
  • 6. B-tree Insert Insert x Block0 seek Block1 Block2 Block3 .... .... seek Block4 Block5 ..................................................................................... File on disk: ... Block0 ... ... Block3 ... Block5 ... Insert one item causes many random seeks!
  • 7. B-tree Search Search x Block0 seek Block1 Block2 Block3 .... .... seek Block4 Block5 ..................................................................................... Query is fast, I/Os costs O(logBN)
  • 8. B-tree Conclusions ¡ñ Search: O(logBN ) block transfers. ¡ñ Insert: O(logBN ) block transfers(slow). ¡ñ B-tree range queries are slow. ¡ñ IMPORTANT: --Parent and child blocks sparse in disk.
  • 9. A Simpli?ed Fractal-tree Cache Oblivious Lookahead Array, invented by MITers
  • 10. COLA log2N ........... Binary Search in one level:O(log2N) 2
  • 11. COLA (Using Fractional Cascading) log2N ........... ¡ñ Search: O(log2N) block transfers. ¡ñ Insert: O((1/B)log2N) amortized block transfers. ¡ñ Data is stored in log2N arrays of sizes 2, 4, 8, 16,.. ¡ñ Balanced Binary Search Tree
  • 12. COLA Conclusions ¡ñ Search: O(log2N) block transfers(Using Fractional Cascading). ¡ñ Insert: O((1/B)log2N) amortized block transfers. ¡ñ Data is stored in log2N arrays of sizes 2, 4, 8, 16,.. ¡ñ Balanced Binary Search Tree ¡ñ Lookahead(Prefetch), Data-Intensive! ¡ñ BUT, the bottom level will be big and bigger, merging expensive.
  • 13. COLA vs B-tree ¡ñ Search: -- (log2N)/(logBN) = log2B times slower than B-tree(In theory) ¡ñ Insert: --(logBN)/((1/B)log2N) = B/(log2B) times faster than B-trees(In theory) if B = 4KB: COLA search is 12 times slower than B-tree COLA insert is 341 times faster than B-tree
  • 15. LSM-tree In memory buffer buffer ... buffer buffer ... buffer ... buffer ... buffer ¡ñ Lazy insertion, Sorted before ¡ñ Leveli is the buffer of Leveli+1 ¡ñ Search: O(logBN) * O(logN) ¡ñ Insert:O((logBN)/B)
  • 16. LSM-tree (Using Fractional Cascading) In memory buffer buffer ... buffer buffer ... buffer ... buffer ... buffer ¡ñ Search: O(logBN) (Using FC) ¡ñ Insert:O((logBN)/B) ¡ñ 0.618 Fractal-tree?But NOT Cache Oblivious...
  • 17. LSM-tree (Merging) In memory buffer buffer ... buffer merge merge merge buffer ... buffer ... buffer ... buffer A lot of I/O wasted during merging! Like a headless fly flying... Zzz...
  • 18. Fractal-tree Indexes Just Fractal. Patented by Tokutek...
  • 19. Fractal-tree Indexes Search: O(logBN) Insert: O((logBN)/B) (amortized) Search is same as B-tree, but insert faster than B-tree
  • 20. Fractal-tree Indexes (Block size) .... .... .... .... B is 4MB...
  • 21. Fractal-tree Indexes (Block size) full .... .... .... .... B is 4MB...
  • 22. Fractal-tree Indexes (Block size) full .... .... .... .... B is 4MB...
  • 23. Fractal-tree Indexes (Block size) .. .. .. .. full .. ... ... ... .. .. .. .. .. .. .. Fractal! 4MB one seek...
  • 24. ¦Å B -tree Just a constant factor on Block fanout...
  • 25. ¦Å B -tree B-tree Fast ¦Å=1/2 Search Slow AOF Slow Fast Inserts Optimal Curve
  • 26. ¦Å B -tree insert search B-tree O(logBN) O(logBN) (?=1) ?=1/2 O((logBN)/¡ÌB) O(logBN) ?=0 O((logN)/B) O(logN) if we want optimal point queries + very fast inserts, we should choose ?=1/2
  • 27. ¦Å B -tree So, if block size is B, the fanout should be ¡ÌB
  • 28. Cache Oblivious Data Structure All the above is JUST Cache Oblivious Data Structures...
  • 29. Cache Oblivious Data Structure Question: Reading a sequence of k consecutive blocks at once is not much more expensive than reading a single block. How to take advantage of this feature?
  • 30. Cache Oblivious Data Structure My Questions(In Chinese): Q1£º Ö»ÓÐ1MBÄڴ棬ÔõÑù°ÑÁ½¸ö64MBÓÐÐòÎļþºÏ ²¢³ÉÒ»¸öÓÐÐòÎļþ£¿ Q2£º ´ó¶àÊý»úе´ÅÅÌ£¬Á¬Ðø¶ÁÈ¡¶à¸öBlockºÍ¶ÁÈ¡ µ¥¸öBlock»¨·ÑÏà²î²»´ó£¬ÔÚQ1ÖÐÈçºÎÀûÓÃÕâ¸ö ÓÅÊÆ£¿
  • 31. nessDB You should agree that VFS do better than yourself cache! https://github.com/shuttler/nessDB
  • 32. nessDB .. ... ... ... .. .. .. .. .. .. .. Each Block is Small-Splittable Tree
  • 33. nessDB, What's going on? .. .. .. .. .. ... ... ... .. .. .. .. .. .. .. From the line to the plane..
  • 34. Thanks! Most of the references are from: Tokutek & MIT CSAIL & Stony Brook. Drafted By BohuTANG using Google Drive, @2012/12/12