ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
?
	
 ?
	
 ?
 ?
On-?©\line ?resources: ?h/p://imagine.enpc.fr/~conejob/ibyl/ ?
 ?
TBD, ?X/X/2014 ?
 ?
Bruno ?Conejo, ?Phd ?student ?Ecole ?des ?Ponts ?ParisTech ?/ ?Research ?Analyst ?GPS, ?
Caltech ?
Nikos ?Komodakis, ?Associate ?Professor ?Ecole ?des ?Ponts ?ParisTech ? ?
with ?S. ?Leprince ?& ?JP. ?Avouac ?(GPS, ?Caltech)
 ?
	
 ?
Inference ?by ?Learning: ?Speeding-?©\up ?Graphical ?
Model ?OpZmizaZon ?via ?a ?Coarse-?©\to-?©\Fine ?
Cascade ?of ?Pruning ?Classi?ers ?(NIPS ?2014)
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 2	
 ?
Introduc=on:	
 ?
Associated ?materials:

Paper, ?code, ?slides ?and ?poster ?are ?available ?on-?©\line ?:
h/p://imagine.enpc.fr/~conejob/ibyl/


MoZvaZons:
1.? Speed-?©\up ?the ?inference ?of ?MRFs ?that ?have ?a ?piecewise ?smooth ?
MAP.
2.? While ?maintaining ?the ?accuracy ?of ?the ?inference ?soluZon ?of ?MRFs.
Approach:
1.? Exploit ?the ?piecewise ?smooth ?structure ?of ?the ?MAP ?by ?iteraZvely ?
opZmizing ?a ?coarse ?to ??ne ?representaZon ?of ?the ?MRF.
2.? Rely ?on ?learning ?to ?progressively ?reduce ?the ?soluZon ?space.
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 3	
 ?
Nota=ons:	
 ?
Let¡¯s ?consider ?the ?following ?discrete ?MRF:
: ?the ?unary ?terms ?of ?vertex ?i
: ?the ?pairwise ?terms ?of ?edge ?ij
support ?
graph
set ?of ?
ver1ces
set ?of ?
edges
discrete ?
label ?set
set ?of ?unary ?
terms
set ?of ?pairwise ?
terms
i
j
: ?the ?con?guraZon ?of ?vertex ?i
: ?the ?con?guraZon ?of ?the ?MRF
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 4	
 ?
Nota=ons:	
 ?
The ?Energy: ?i.e., ?the ?total ?cost ?is ?given ?by
The ?MAP: ?Maximum ?At ?Posteriori
The ?pruning ?matrix: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?is ?de?ned ?by:
 ?

and ?its ?associated ?soluZon ?space:
With ? ? ? ? ? ?such ?that: ?
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 5	
 ?
Approach:	
 ?
To ?obtain ?an ?inference ?speed-?©\up ?we ?solve:
belongs ?to
most ?elements ?of ? ? ? ? ?are ?0 ?(i.e., ?the ?labels ?are ?pruned)
The ?IbyL ?framework ?iteraZvely ?esZmates ? ? ? ? ? ?by: ?
1.? Building ?a ?coarse ?to ??ne ?set ?of ?MRFs ?from ?
2.? Learning ?at ?each ?scale ?pruning ?classi?ers ?to ?re?ne ?
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 6	
 ?
Model	
 ?coarsening:	
 ?
Given ? ? ? ? ? ? ?and ?a ?grouping ?funcZon ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?, ?we ?create ?a ?coarsen ?MRF ?
(slight ?abuse ?of ?the ?notaZon): ?
The ?unary ?and ?pairwise ?potenZals ?of ? ? ? ? ? ? ?are ?given ?by
The ?verZces ?and ?edges ?of ? ? ? ? ? ? ?are ?given ?by
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 7	
 ?
Coarse	
 ?to	
 ??ne	
 ?op=miza=on	
 ?and	
 ?label	
 ?pruning	
 ?
We ?iteraZvely ?apply ?the ?previous ?coarsening ?to ? ?build ?a ?coarse ?to ??ne ?set ?
of ?N+1 ?progressively ?coarser ?MRFs:

with:
We ?set ?all ?elements ?of ?the ?coarsest ?pruning ?matrix ? ? ? ? ? ? ? ? ? ? ?to ?1 ?(no ?pruning)
At ?each ?scale ?(s) ?we ?apply ?the ?following ?steps: ?

1.? OpZmize ?the ?current ?MRF
2.? Update ?the ?next ?scale ?pruning ?matrix ?
3.? Up-?©\sample ?the ?current ?soluZon ?for ?next ?scale.
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 8	
 ?
Coarse	
 ?to	
 ??ne	
 ?op=miza=on	
 ?and	
 ?label	
 ?pruning	
 ?
Step ?1: ?OpZmize ?the ?current ?MRF:
Step ?2: ?Update ?the ?next ?scale ?pruning ?matrix:
i.? Compute ?feature ?map:


ii.? Update ?pruning ?matrix ?from ?o?-?©\line ?trained ?classi?er: ?
Step ?3: ?Up-?©\sample ?the ?current ?soluZon:
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 9	
 ?
Inference	
 ?by	
 ?learning	
 ?framework	
 ?
We ?sZll ?need ?to ?de?ne:
1.? How ?to ?compute ?the ?feature ?map
2.? How ?to ?train ?the ?classi?ers
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 10	
 ?
Feature	
 ?map	
 ?
We ?stack ?K ?individual ?scalar ?features ?de?ned ?on ?


Presence ?of ?strong ?disconZnuity:


Local ?energy ?variaZon:


Unary ?coarsening:
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 11	
 ?
Learning	
 ?pruning	
 ?classi?ers	
 ?
On ?a ?training ?set ?of ?MRFs, ?we ?run ?the ?IbyL ?framework ?without ?any ?
pruning, ?i.e., ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?. ?We ?keep ?track ?of ?features ?and ?compute:


such ?that:







where ? ? ? ? ?denotes ?the ?binary ?OR ?operator.
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 12	
 ?
Learning	
 ?pruning	
 ?classi?ers	
 ?
We ?split ?the ?features ?in ?two ?groups ?w.r.t ?the ?PSD ?feature.

For ?each ?group:
1.? We ?have ?two ?classes ?(c0=to ?prune ?and ?c1=to ?remain ?acZve) ?
de?ned ?from
2.? We ?weight ?c0 ?to ?1, ?and ?c1 ?to
3.? We ?train ?a ?linear ?C-?©\SVM ?classi?er

During ?tesZng, ?the ?classi?er ? ? ? ? ? ? ? ? ?apply ?the ?trained ?classi?er ?of ?the ?
corresponding ?group ?(w.r.t. ?the ?PSD ?feature).
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 13	
 ?
Experiments:	
 ?Setup	
 ?
We ?experiment ?with ?two ?problems:
1.? Stereo-?©\matching.
2.? OpZcal ??ow.
We ?evaluate ?di?erent ?pruning ?aggressiveness ?factor ? ? ? ?, ?and ?compute:
1.? The ?speed-?©\up ?w.r.t. ?the ?direct ?opZmizaZon.
2.? The ?raZo ?of ?acZve ?labels.
3.? The ?energy ?raZo ?w.r.t. ?the ?direct ?opZmizaZon.
4.? The ?MAP ?agreement ?w.r.t. ?the ?best ?computed ?soluZon.

As ?an ?opZmizaZon ?sub-?©\rouZne ?we ?use ?Fast-?©\PD.
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 14	
 ?
Experiments:	
 ?Results	
 ?
Stereo ?matching:
OpZcal ??ow:
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 15	
 ?
Experiments:	
 ?Stereo	
 ?matching	
 ?
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 16	
 ?
Experiments:	
 ?Op=cal	
 ?Flow	
 ?
B.Conejo	
 ?N.Komodakis	
 ?¨C	
 ?Inference	
 ?by	
 ?Learning	
 ? 17	
 ?
Conclusions	
 ?
The ?IbyL ?framework:
1.? Gives ?an ?important ?speed-?©\up ?while ?maintaining ?excellent ?
accuracy ?of ?the ?soluZon. ?
2.? Can ?be ?easily ?adapted ?to ?any ?MRF ?task ?by ?compuZng ?task ?
dependent ? ?features.
3.? Can ?be ?easily ?adapted ?to ?high ?order ?MRFs.
4.? Is ?available ?to ?download ?at: ?
h/p://imagine.enpc.fr/~conejob/ibyl/
B.Conejo	
 ?-?©\	
 ?Fast	
 ?global	
 ?Matching	
 ?via	
 ?Energy	
 ?Pyramid	
 ? 18	
 ?
Ad

Recommended

Presentation visapp
Presentation visapp
Caroline Pacheco do E. Silva
?
An optical instrument
An optical instrument
Dita Issriza
?
Tennis video shot classification based on support vector
Tennis video shot classification based on support vector
es712
?
SPPNet
SPPNet
anna8885
?
Fast Global Stereo Matching Via Energy Pyramid Minimization
Fast Global Stereo Matching Via Energy Pyramid Minimization
Bruno Conejo (bconejo@gmail.com)
?
ds2010
ds2010
Artur Aiguzhinov
?
Link-based document classification using Bayesian Networks
Link-based document classification using Bayesian Networks
Alfonso E. Romero
?
AAAI 2014 Spring - Learning Task Management of an Aircraft Approach System
AAAI 2014 Spring - Learning Task Management of an Aircraft Approach System
Joe Krall
?
Weighted Na?ve Bayes Model for Semi-Structured Document Categorization
Weighted Na?ve Bayes Model for Semi-Structured Document Categorization
inscit2006
?
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
zukun
?
AAAI Beth Logan
AAAI Beth Logan
bethloganintel
?
Convolution Neural Networks
Convolution Neural Networks
AhmedMahany
?
PROMISE 2011: "Handling missing data in software effort prediction with naive...
PROMISE 2011: "Handling missing data in software effort prediction with naive...
CS, NcState
?
Ontological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learning
University of Nantes
?
NIPS paper review 2014: A Differential Equation for Modeling Nesterov¡¯s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov¡¯s Accel...
Kai-Wen Zhao
?
Modeling Social Data, Lecture 6: Classification with Naive Bayes
Modeling Social Data, Lecture 6: Classification with Naive Bayes
jakehofman
?
db-tech-showcase-sapporo-b24-20150911p
db-tech-showcase-sapporo-b24-20150911p
Satoru Ishikawa
?
¡¾2015.08¡¿(4/5)³¦±¹±è²¹±è±ð°ù.³¦³ó²¹±ô±ô±ð²Ô²µ±ð°ª°ä³Õ±Ê¸é2015
¡¾2015.08¡¿(4/5)³¦±¹±è²¹±è±ð°ù.³¦³ó²¹±ô±ô±ð²Ô²µ±ð°ª°ä³Õ±Ê¸é2015
cvpaper. challenge
?
2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning
Van Thanh
?
Social Information Processing (Tin180 Com)
Social Information Processing (Tin180 Com)
Tin180 VietNam
?
What's Wrong With Deep Learning?
What's Wrong With Deep Learning?
Philip Zheng
?
An Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational Networks
Marko Rodriguez
?
Sentiment analysis using naive bayes classifier
Sentiment analysis using naive bayes classifier
Dev Sahu
?
Best practices in NIPS - IDC Sofia - March 2010
Best practices in NIPS - IDC Sofia - March 2010
EQS Group
?
R-FCN : object detection via region-based fully convolutional networks
R-FCN : object detection via region-based fully convolutional networks
Entrepreneur / Startup
?
Cheatsheet convolutional-neural-networks
Cheatsheet convolutional-neural-networks
Steve Nouri
?
Review: You Only Look One-level Feature
Review: You Only Look One-level Feature
Dongmin Choi
?
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistry
Kenta Oono
?
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Pirouz Nourian
?
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Abdulrahman Kerim
?

More Related Content

Viewers also liked (16)

Weighted Na?ve Bayes Model for Semi-Structured Document Categorization
Weighted Na?ve Bayes Model for Semi-Structured Document Categorization
inscit2006
?
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
zukun
?
AAAI Beth Logan
AAAI Beth Logan
bethloganintel
?
Convolution Neural Networks
Convolution Neural Networks
AhmedMahany
?
PROMISE 2011: "Handling missing data in software effort prediction with naive...
PROMISE 2011: "Handling missing data in software effort prediction with naive...
CS, NcState
?
Ontological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learning
University of Nantes
?
NIPS paper review 2014: A Differential Equation for Modeling Nesterov¡¯s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov¡¯s Accel...
Kai-Wen Zhao
?
Modeling Social Data, Lecture 6: Classification with Naive Bayes
Modeling Social Data, Lecture 6: Classification with Naive Bayes
jakehofman
?
db-tech-showcase-sapporo-b24-20150911p
db-tech-showcase-sapporo-b24-20150911p
Satoru Ishikawa
?
¡¾2015.08¡¿(4/5)³¦±¹±è²¹±è±ð°ù.³¦³ó²¹±ô±ô±ð²Ô²µ±ð°ª°ä³Õ±Ê¸é2015
¡¾2015.08¡¿(4/5)³¦±¹±è²¹±è±ð°ù.³¦³ó²¹±ô±ô±ð²Ô²µ±ð°ª°ä³Õ±Ê¸é2015
cvpaper. challenge
?
2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning
Van Thanh
?
Social Information Processing (Tin180 Com)
Social Information Processing (Tin180 Com)
Tin180 VietNam
?
What's Wrong With Deep Learning?
What's Wrong With Deep Learning?
Philip Zheng
?
An Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational Networks
Marko Rodriguez
?
Sentiment analysis using naive bayes classifier
Sentiment analysis using naive bayes classifier
Dev Sahu
?
Best practices in NIPS - IDC Sofia - March 2010
Best practices in NIPS - IDC Sofia - March 2010
EQS Group
?
Weighted Na?ve Bayes Model for Semi-Structured Document Categorization
Weighted Na?ve Bayes Model for Semi-Structured Document Categorization
inscit2006
?
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
zukun
?
Convolution Neural Networks
Convolution Neural Networks
AhmedMahany
?
PROMISE 2011: "Handling missing data in software effort prediction with naive...
PROMISE 2011: "Handling missing data in software effort prediction with naive...
CS, NcState
?
Ontological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learning
University of Nantes
?
NIPS paper review 2014: A Differential Equation for Modeling Nesterov¡¯s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov¡¯s Accel...
Kai-Wen Zhao
?
Modeling Social Data, Lecture 6: Classification with Naive Bayes
Modeling Social Data, Lecture 6: Classification with Naive Bayes
jakehofman
?
db-tech-showcase-sapporo-b24-20150911p
db-tech-showcase-sapporo-b24-20150911p
Satoru Ishikawa
?
¡¾2015.08¡¿(4/5)³¦±¹±è²¹±è±ð°ù.³¦³ó²¹±ô±ô±ð²Ô²µ±ð°ª°ä³Õ±Ê¸é2015
¡¾2015.08¡¿(4/5)³¦±¹±è²¹±è±ð°ù.³¦³ó²¹±ô±ô±ð²Ô²µ±ð°ª°ä³Õ±Ê¸é2015
cvpaper. challenge
?
2010 deep learning and unsupervised feature learning
2010 deep learning and unsupervised feature learning
Van Thanh
?
Social Information Processing (Tin180 Com)
Social Information Processing (Tin180 Com)
Tin180 VietNam
?
What's Wrong With Deep Learning?
What's Wrong With Deep Learning?
Philip Zheng
?
An Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational Networks
Marko Rodriguez
?
Sentiment analysis using naive bayes classifier
Sentiment analysis using naive bayes classifier
Dev Sahu
?
Best practices in NIPS - IDC Sofia - March 2010
Best practices in NIPS - IDC Sofia - March 2010
EQS Group
?

Similar to Inference by Learning: Speeding-?©\up Graphical Model Optimization via a Coarse-?to-?Fine Cascade of Pruning Classifiers (NIPS 2014) (20)

R-FCN : object detection via region-based fully convolutional networks
R-FCN : object detection via region-based fully convolutional networks
Entrepreneur / Startup
?
Cheatsheet convolutional-neural-networks
Cheatsheet convolutional-neural-networks
Steve Nouri
?
Review: You Only Look One-level Feature
Review: You Only Look One-level Feature
Dongmin Choi
?
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistry
Kenta Oono
?
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Pirouz Nourian
?
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Abdulrahman Kerim
?
Skiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programming
zukun
?
QMC: Transition Workshop - Monte Carlo and (Randomized) Quasi-Monte Carlo Sim...
QMC: Transition Workshop - Monte Carlo and (Randomized) Quasi-Monte Carlo Sim...
The Statistical and Applied Mathematical Sciences Institute
?
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
IJERA Editor
?
A note on word embedding
A note on word embedding
Khang Pham
?
Audio Processing
Audio Processing
aneetaanu
?
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...
csandit
?
22PCOAM16 _ML_ Unit 2 Full unit notes.pdf
22PCOAM16 _ML_ Unit 2 Full unit notes.pdf
Guru Nanak Technical Institutions
?
22PCOAM16 ML UNIT 2 NOTES & QB QUESTION WITH ANSWERS
22PCOAM16 ML UNIT 2 NOTES & QB QUESTION WITH ANSWERS
Guru Nanak Technical Institutions
?
[MIRU2018] Global Average Pooling¤ÎÌØÐÔ¤òÓ䤤¿Attention Branch Network
[MIRU2018] Global Average Pooling¤ÎÌØÐÔ¤òÓ䤤¿Attention Branch Network
Hiroshi Fukui
?
MLIP - Chapter 5 - Detection, Segmentation, Captioning
MLIP - Chapter 5 - Detection, Segmentation, Captioning
Charles Deledalle
?
kmeans.pdfbgfyih bhdsey jbct gtfryjvftyjhgtuugft
kmeans.pdfbgfyih bhdsey jbct gtfryjvftyjhgtuugft
RahinTamboli
?
super-cheatsheet-deep-learning.pdf
super-cheatsheet-deep-learning.pdf
DeanSchoolofElectron
?
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_?????.pdf
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_?????.pdf
SongsDrizzle
?
DNN and RBM
DNN and RBM
Masayuki Tanaka
?
R-FCN : object detection via region-based fully convolutional networks
R-FCN : object detection via region-based fully convolutional networks
Entrepreneur / Startup
?
Cheatsheet convolutional-neural-networks
Cheatsheet convolutional-neural-networks
Steve Nouri
?
Review: You Only Look One-level Feature
Review: You Only Look One-level Feature
Dongmin Choi
?
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistry
Kenta Oono
?
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Point Cloud Processing: Estimating Normal Vectors and Curvature Indicators us...
Pirouz Nourian
?
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Towards Accurate Multi-person Pose Estimation in the Wild (My summery)
Abdulrahman Kerim
?
Skiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programming
zukun
?
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
IJERA Editor
?
A note on word embedding
A note on word embedding
Khang Pham
?
Audio Processing
Audio Processing
aneetaanu
?
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...
Objective Evaluation of a Deep Neural Network Approach for Single-Channel Spe...
csandit
?
[MIRU2018] Global Average Pooling¤ÎÌØÐÔ¤òÓ䤤¿Attention Branch Network
[MIRU2018] Global Average Pooling¤ÎÌØÐÔ¤òÓ䤤¿Attention Branch Network
Hiroshi Fukui
?
MLIP - Chapter 5 - Detection, Segmentation, Captioning
MLIP - Chapter 5 - Detection, Segmentation, Captioning
Charles Deledalle
?
kmeans.pdfbgfyih bhdsey jbct gtfryjvftyjhgtuugft
kmeans.pdfbgfyih bhdsey jbct gtfryjvftyjhgtuugft
RahinTamboli
?
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_?????.pdf
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_?????.pdf
SongsDrizzle
?
Ad

Recently uploaded (20)

plant and animal nutrition..........pptx
plant and animal nutrition..........pptx
mayflorgalleno
?
Solution Chemistry Basics, molarity Molality
Solution Chemistry Basics, molarity Molality
nuralam819365
?
MOLD -GENERAL CHARACTERISTICS AND CLASSIFICATION
MOLD -GENERAL CHARACTERISTICS AND CLASSIFICATION
aparnamp966
?
Climate and Weather_Science 9_Q3_PH.pptx
Climate and Weather_Science 9_Q3_PH.pptx
Dayan Espartero
?
Science 7 DLL Week 1 Quarter 1 Matatag Curriculum
Science 7 DLL Week 1 Quarter 1 Matatag Curriculum
RONAFAITHLOOC
?
The scientific heritage No 162 (162) (2025)
The scientific heritage No 162 (162) (2025)
The scientific heritage
?
Role of Glutamate, glutamine and Alanine in Transport of Ammonia in Tissues
Role of Glutamate, glutamine and Alanine in Transport of Ammonia in Tissues
Tayyab
?
GBSN_ Unit 1 - Introduction to Microbiology
GBSN_ Unit 1 - Introduction to Microbiology
Areesha Ahmad
?
Relazione di laboratorio Idrolisi dell'amido (in inglese)
Relazione di laboratorio Idrolisi dell'amido (in inglese)
paolofvesco
?
Science Holiday Homework (interesting slide )
Science Holiday Homework (interesting slide )
aryanxkohli88
?
History of Nursing and Nursing As A Profession UNIT-3.pptx
History of Nursing and Nursing As A Profession UNIT-3.pptx
madhusrinivas68
?
pollination njnjnjnjnjnjjnjnjnjnjnjnjnnj
pollination njnjnjnjnjnjjnjnjnjnjnjnjnnj
bhg31shagnik
?
Science Experiment: Properties of Water.pptx
Science Experiment: Properties of Water.pptx
marionrada1985
?
Properties of Gases siwhdhadpaldndn.pptx
Properties of Gases siwhdhadpaldndn.pptx
CatherineJadeBurce
?
GBSN_Unit 3 - Medical and surgical Asepsis
GBSN_Unit 3 - Medical and surgical Asepsis
Areesha Ahmad
?
lysosomes "suicide bags of cell" and hydrolytic enzymes
lysosomes "suicide bags of cell" and hydrolytic enzymes
kchaturvedi070
?
EV REGENERATIVE ACCELERATION INNOVATION SUMMARY PITCH June 13, 2025.pdf
EV REGENERATIVE ACCELERATION INNOVATION SUMMARY PITCH June 13, 2025.pdf
Thane Heins NOBEL PRIZE WINNING ENERGY RESEARCHER
?
Antipsychotics-FOR LECTURE.pdf................
Antipsychotics-FOR LECTURE.pdf................
FalguniPatil6
?
STAPHYLOCOCCAL AND STREPTOCOCCAL INFECTIONS 2.ppt
STAPHYLOCOCCAL AND STREPTOCOCCAL INFECTIONS 2.ppt
pakranti27
?
Operationalising OGC Processes with Application Packages in ILIAD: A Service ...
Operationalising OGC Processes with Application Packages in ILIAD: A Service ...
Marco Amaro Oliveira
?
plant and animal nutrition..........pptx
plant and animal nutrition..........pptx
mayflorgalleno
?
Solution Chemistry Basics, molarity Molality
Solution Chemistry Basics, molarity Molality
nuralam819365
?
MOLD -GENERAL CHARACTERISTICS AND CLASSIFICATION
MOLD -GENERAL CHARACTERISTICS AND CLASSIFICATION
aparnamp966
?
Climate and Weather_Science 9_Q3_PH.pptx
Climate and Weather_Science 9_Q3_PH.pptx
Dayan Espartero
?
Science 7 DLL Week 1 Quarter 1 Matatag Curriculum
Science 7 DLL Week 1 Quarter 1 Matatag Curriculum
RONAFAITHLOOC
?
The scientific heritage No 162 (162) (2025)
The scientific heritage No 162 (162) (2025)
The scientific heritage
?
Role of Glutamate, glutamine and Alanine in Transport of Ammonia in Tissues
Role of Glutamate, glutamine and Alanine in Transport of Ammonia in Tissues
Tayyab
?
GBSN_ Unit 1 - Introduction to Microbiology
GBSN_ Unit 1 - Introduction to Microbiology
Areesha Ahmad
?
Relazione di laboratorio Idrolisi dell'amido (in inglese)
Relazione di laboratorio Idrolisi dell'amido (in inglese)
paolofvesco
?
Science Holiday Homework (interesting slide )
Science Holiday Homework (interesting slide )
aryanxkohli88
?
History of Nursing and Nursing As A Profession UNIT-3.pptx
History of Nursing and Nursing As A Profession UNIT-3.pptx
madhusrinivas68
?
pollination njnjnjnjnjnjjnjnjnjnjnjnjnnj
pollination njnjnjnjnjnjjnjnjnjnjnjnjnnj
bhg31shagnik
?
Science Experiment: Properties of Water.pptx
Science Experiment: Properties of Water.pptx
marionrada1985
?
Properties of Gases siwhdhadpaldndn.pptx
Properties of Gases siwhdhadpaldndn.pptx
CatherineJadeBurce
?
GBSN_Unit 3 - Medical and surgical Asepsis
GBSN_Unit 3 - Medical and surgical Asepsis
Areesha Ahmad
?
lysosomes "suicide bags of cell" and hydrolytic enzymes
lysosomes "suicide bags of cell" and hydrolytic enzymes
kchaturvedi070
?
Antipsychotics-FOR LECTURE.pdf................
Antipsychotics-FOR LECTURE.pdf................
FalguniPatil6
?
STAPHYLOCOCCAL AND STREPTOCOCCAL INFECTIONS 2.ppt
STAPHYLOCOCCAL AND STREPTOCOCCAL INFECTIONS 2.ppt
pakranti27
?
Operationalising OGC Processes with Application Packages in ILIAD: A Service ...
Operationalising OGC Processes with Application Packages in ILIAD: A Service ...
Marco Amaro Oliveira
?
Ad

Inference by Learning: Speeding-?©\up Graphical Model Optimization via a Coarse-?to-?Fine Cascade of Pruning Classifiers (NIPS 2014)

  • 1. ? ? ? ? On-?©\line ?resources: ?h/p://imagine.enpc.fr/~conejob/ibyl/ ? ? TBD, ?X/X/2014 ? ? Bruno ?Conejo, ?Phd ?student ?Ecole ?des ?Ponts ?ParisTech ?/ ?Research ?Analyst ?GPS, ? Caltech ? Nikos ?Komodakis, ?Associate ?Professor ?Ecole ?des ?Ponts ?ParisTech ? ? with ?S. ?Leprince ?& ?JP. ?Avouac ?(GPS, ?Caltech) ? ? Inference ?by ?Learning: ?Speeding-?©\up ?Graphical ? Model ?OpZmizaZon ?via ?a ?Coarse-?©\to-?©\Fine ? Cascade ?of ?Pruning ?Classi?ers ?(NIPS ?2014)
  • 2. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 2 ? Introduc=on: ? Associated ?materials: Paper, ?code, ?slides ?and ?poster ?are ?available ?on-?©\line ?: h/p://imagine.enpc.fr/~conejob/ibyl/ MoZvaZons: 1.? Speed-?©\up ?the ?inference ?of ?MRFs ?that ?have ?a ?piecewise ?smooth ? MAP. 2.? While ?maintaining ?the ?accuracy ?of ?the ?inference ?soluZon ?of ?MRFs. Approach: 1.? Exploit ?the ?piecewise ?smooth ?structure ?of ?the ?MAP ?by ?iteraZvely ? opZmizing ?a ?coarse ?to ??ne ?representaZon ?of ?the ?MRF. 2.? Rely ?on ?learning ?to ?progressively ?reduce ?the ?soluZon ?space.
  • 3. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 3 ? Nota=ons: ? Let¡¯s ?consider ?the ?following ?discrete ?MRF: : ?the ?unary ?terms ?of ?vertex ?i : ?the ?pairwise ?terms ?of ?edge ?ij support ? graph set ?of ? ver1ces set ?of ? edges discrete ? label ?set set ?of ?unary ? terms set ?of ?pairwise ? terms i j : ?the ?con?guraZon ?of ?vertex ?i : ?the ?con?guraZon ?of ?the ?MRF
  • 4. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 4 ? Nota=ons: ? The ?Energy: ?i.e., ?the ?total ?cost ?is ?given ?by The ?MAP: ?Maximum ?At ?Posteriori The ?pruning ?matrix: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?is ?de?ned ?by: ? and ?its ?associated ?soluZon ?space:
  • 5. With ? ? ? ? ? ?such ?that: ? B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 5 ? Approach: ? To ?obtain ?an ?inference ?speed-?©\up ?we ?solve: belongs ?to most ?elements ?of ? ? ? ? ?are ?0 ?(i.e., ?the ?labels ?are ?pruned) The ?IbyL ?framework ?iteraZvely ?esZmates ? ? ? ? ? ?by: ? 1.? Building ?a ?coarse ?to ??ne ?set ?of ?MRFs ?from ? 2.? Learning ?at ?each ?scale ?pruning ?classi?ers ?to ?re?ne ?
  • 6. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 6 ? Model ?coarsening: ? Given ? ? ? ? ? ? ?and ?a ?grouping ?funcZon ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?, ?we ?create ?a ?coarsen ?MRF ? (slight ?abuse ?of ?the ?notaZon): ? The ?unary ?and ?pairwise ?potenZals ?of ? ? ? ? ? ? ?are ?given ?by The ?verZces ?and ?edges ?of ? ? ? ? ? ? ?are ?given ?by
  • 7. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 7 ? Coarse ?to ??ne ?op=miza=on ?and ?label ?pruning ? We ?iteraZvely ?apply ?the ?previous ?coarsening ?to ? ?build ?a ?coarse ?to ??ne ?set ? of ?N+1 ?progressively ?coarser ?MRFs: with: We ?set ?all ?elements ?of ?the ?coarsest ?pruning ?matrix ? ? ? ? ? ? ? ? ? ? ?to ?1 ?(no ?pruning) At ?each ?scale ?(s) ?we ?apply ?the ?following ?steps: ? 1.? OpZmize ?the ?current ?MRF 2.? Update ?the ?next ?scale ?pruning ?matrix ? 3.? Up-?©\sample ?the ?current ?soluZon ?for ?next ?scale.
  • 8. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 8 ? Coarse ?to ??ne ?op=miza=on ?and ?label ?pruning ? Step ?1: ?OpZmize ?the ?current ?MRF: Step ?2: ?Update ?the ?next ?scale ?pruning ?matrix: i.? Compute ?feature ?map: ii.? Update ?pruning ?matrix ?from ?o?-?©\line ?trained ?classi?er: ? Step ?3: ?Up-?©\sample ?the ?current ?soluZon:
  • 9. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 9 ? Inference ?by ?learning ?framework ? We ?sZll ?need ?to ?de?ne: 1.? How ?to ?compute ?the ?feature ?map 2.? How ?to ?train ?the ?classi?ers
  • 10. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 10 ? Feature ?map ? We ?stack ?K ?individual ?scalar ?features ?de?ned ?on ? Presence ?of ?strong ?disconZnuity: Local ?energy ?variaZon: Unary ?coarsening:
  • 11. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 11 ? Learning ?pruning ?classi?ers ? On ?a ?training ?set ?of ?MRFs, ?we ?run ?the ?IbyL ?framework ?without ?any ? pruning, ?i.e., ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?. ?We ?keep ?track ?of ?features ?and ?compute: such ?that: where ? ? ? ? ?denotes ?the ?binary ?OR ?operator.
  • 12. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 12 ? Learning ?pruning ?classi?ers ? We ?split ?the ?features ?in ?two ?groups ?w.r.t ?the ?PSD ?feature. For ?each ?group: 1.? We ?have ?two ?classes ?(c0=to ?prune ?and ?c1=to ?remain ?acZve) ? de?ned ?from 2.? We ?weight ?c0 ?to ?1, ?and ?c1 ?to 3.? We ?train ?a ?linear ?C-?©\SVM ?classi?er During ?tesZng, ?the ?classi?er ? ? ? ? ? ? ? ? ?apply ?the ?trained ?classi?er ?of ?the ? corresponding ?group ?(w.r.t. ?the ?PSD ?feature).
  • 13. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 13 ? Experiments: ?Setup ? We ?experiment ?with ?two ?problems: 1.? Stereo-?©\matching. 2.? OpZcal ??ow. We ?evaluate ?di?erent ?pruning ?aggressiveness ?factor ? ? ? ?, ?and ?compute: 1.? The ?speed-?©\up ?w.r.t. ?the ?direct ?opZmizaZon. 2.? The ?raZo ?of ?acZve ?labels. 3.? The ?energy ?raZo ?w.r.t. ?the ?direct ?opZmizaZon. 4.? The ?MAP ?agreement ?w.r.t. ?the ?best ?computed ?soluZon. As ?an ?opZmizaZon ?sub-?©\rouZne ?we ?use ?Fast-?©\PD.
  • 14. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 14 ? Experiments: ?Results ? Stereo ?matching: OpZcal ??ow:
  • 15. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 15 ? Experiments: ?Stereo ?matching ?
  • 16. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 16 ? Experiments: ?Op=cal ?Flow ?
  • 17. B.Conejo ?N.Komodakis ?¨C ?Inference ?by ?Learning ? 17 ? Conclusions ? The ?IbyL ?framework: 1.? Gives ?an ?important ?speed-?©\up ?while ?maintaining ?excellent ? accuracy ?of ?the ?soluZon. ? 2.? Can ?be ?easily ?adapted ?to ?any ?MRF ?task ?by ?compuZng ?task ? dependent ? ?features. 3.? Can ?be ?easily ?adapted ?to ?high ?order ?MRFs. 4.? Is ?available ?to ?download ?at: ? h/p://imagine.enpc.fr/~conejob/ibyl/
  • 18. B.Conejo ?-?©\ ?Fast ?global ?Matching ?via ?Energy ?Pyramid ? 18 ?