Analisis input-output digunakan untuk melihat keterkaitan antar sektor ekonomi di suatu wilayah secara komprehensif. Dengan analisis ini, dampak perubahan produksi suatu sektor terhadap sektor lain dapat diketahui. Analisis ini berguna untuk merencanakan pembangunan karena dapat mengidentifikasi sektor strategis dan memproyeksikan pertumbuhan ekonomi. Ilustrasi tabel input-output menggambarkan aliran antar sektor pert
2. Definisi Analisis Input-Output:
2
Suatu analisis atas perekonomian wilayah secara
komprehensif karena melihat keterkaitan antar
sektor ekonomi di wilayah tersebut secara
keseluruhan.
Dengan demikian,apabila terjadi perubahan
tingkat produksi atas sektor tertentu,dampaknya
terhadap sektor lain dapat dilihat
3. Manfaat Analisis Input-Output
3
Menggambarkan kaitan antarsektor sehingga memperluas wawasan
terhadap perekonomian wilayah. Perekonomian wilayah bukan lagi
sebagai kumpulan sektor-sektor melainkan merupakan suatu sistem
yang saling berhubungan
Digunakan untuk mengetahui daya menarik (backward linkage) dan
daya mendorong (forward linkage) dari setiap sektor sehingga mudah
menetapkan sektor mana yang dijadikan sebagai sektor strategis
dalam pembangunan perekonomian wilayah
Dapat meramalkan pertumbuhan ekonomi dan kenaikan tingkat
kemakmuran
Sebagai salah satu alat analisis yang penting dalam perencanaan
pembangunan
4. Ilustrasi Sederhana tentang Tabel
Input-Output
4
Asumsi-asumsi:
1. Perekonomian wilayah disederhanakan hanya terdiri dari dua sektor yaitu pertanian
dan perindustrian.
2. Perekonomian diasumsikan tertutup, tidak ada ekspor dan impor.
3. Hasil produksi diasumsikan habis terpakai, terjual sebagai bahan baku atau sebagai
konsumen akhir
Pembelian oleh Sektor
Penyediaan oleh
Sektor
Pertanian Industri Masyarakat
(permintaan
akhir)
Total Output
Pertanian 20 60 120 200
Industri 40 20 40 100
Masyarakat
(input primer)
140 20 0 160
Total Input 200 100 160 460
5. 5
Tabel Transaksi dalam Metode Input-
Output
Sumber Input
Sektor Konsumen (OUTPUT)
PermintaanAntara
(Intermediate Purchasers)
PermintaanAkhir
(Final Purchasers)
Total Penyediaan
(Outputs)
Impor
Jumlah
Output
a. Input Antara
Sektor Produksi
Kuadran I
Kuadran II
Sektor 1 X1l X1j X1m F1 M1 X1
Sektor 2 X2l X2j X2m F2 M2 X2
Sektor i Xil Xij Xim Fi Mi Xi
Sektor n Xnl Xnj Xnm Fn Mn Xn
Kuadran III
Kuadran IVb. Input Primer Vl Vj Vm
Jumlah Input Xl Xj Xm
6. 6
Penjelasan Kuadran
1. Kuadran 1
terdiri atas transaksi antarsektor/kegiatan, yaitu arus barang/jasa yang
dihasilkan oleh suatu sektor untuk digunakan oleh sektor lain (termasuk
sektor itu sendiri) baik sebagai bahan baku maupun bahan penolong
2. Kuadran 2
terdiri atas permintaan akhir, yaitu barang dan jasa yang dibeli oleh
masyarakat untuk dikonsumsi (habis terpakai) dan untuk investasi
3. Kuadran 3
berisikan input primer, yaitu semua daya dan dana yang diperlukan
untuk menghasilkan suatu produk tetapi diluar kategori input antara
4. Kuadran 4
menggambarkan bagaimana balas jasa yang diterima input primer
didistribusikan ke dalam permintaan akhir
7. Formulasi Tabel
7
1. Persamaan menurut baris adalah sebagai berikut:
X1l ++X1j++X1m+F1 = X1+M1
Xil ++Xij++Xim+Fi = Xi+Mi
Xnl ++Xnj++Xnm+Fn= Xn+Mn
arti dari persamaan ini adalah total penyediaan sektor I yang menjadi
input antara ditambah dengan yang menjadi permintaan akhir sama dengan
total produksi sektor I ditambah impor
2. Persamaan menurut kolom adalah sebagai berikut:
X1l ++Xil++Xnl+V1 = X1
X1j ++Xij++Xnj+Vj = Xj
Xlm ++Xim++Xnm+Vm= Xm
arti dari persamaan ini adalah total input antara ditambah input primer
adalah sama dengan total input untuk sektor i.
9. =
9
I - A = ( I A )
Matriks Pengganda
Langkah 1
( (1 0
0 1 ( (0,1 0,6
0,2 0,2
- =( (0,9 -0,6
-0,2 0,8
Determinan dari matriks:
D = (0,9)(0,8) (-0,6)(-0,2)
= 0,72 0,12
= 0,60
Matriks pengganda adalah faktor yang menentukan besarnya perubahan pada
keseluruhan sektor seandainya jumlah produksi suatu sektor ada yang berubah
Matriks pengganda dibutuhkan dalam memproyeksi dampak dari perubahan
salah satu sektor terhadap keseluruhan sektor
10. 10
Matriks Pengganda
( (a b
c d
Mengtranspose matriks untuk menghasilkan matriks adjoint:
( (0,8 0,6
0,2 0,9
Langkah 2
Langkah 3
Membagi matriks adjoint dengan determinan dari matriks (I-A) dan hasilnya adalah
kebalikan dari matriks (I-A) atau (I-A)-1. invers dari matriks ini disebut juga dengan
matriks pengganda
( (1,33 1,0
0,33 1,5
( (d -b
-c a ( (0,9 -0,6
-0,2 0,8
( (0,8 0,6
0,2 0,9
: 0,6
11. 11
Langkah 4
Mengkalikan matriks pengganda dengan permintaan akhir dari X1 dan
X2 yang berubah (hasil proyeksi) untuk mendapatkan total output X1
dan X2 yang baru. Hasilnya adalah matriks perkalian
((X1
X2
=
( (1,33 1,0
0,33 1,5 ((120
40
Langkah 5
Output total sektor pertanian (X1) adalah:
(1,33 x 120) + (1,0 x 40) = 220 (dibulatkan)
Output total sektor industri (X2) adalah
(0,33 x 120) + (1,5 x 40) = 130 (dibulatkan)
12. 12
DAYA MENARIK, DAYA MENDORONG, DAN
DERAJAT KEPEKAAN (1)
Daya menarik (backward linkage) menggambarkan
pengaruh kenaikan permintaan akhir suatu sektor terhadap
sektor lainnya 留
Daya pendorong (forward linkage) adalah daya yang
mendorong tumbuhnya sektor-sektor hilir karena
meningkatnya input yang disediakan sektor hulu
Derajat kepekaan, sifatnya merangsang sektor hilir
untuk berkembang karena berkembangnya sektor hulu 硫
Derajat kepekaan digunakan untuk mengetahui daya
dorong (forward linkage)
13. Apabila 留j = 1 berarti daya menariknya sama dengan rata-rata wilayah
(rata-rata keseluruhan sektor).
Apabila 留j > 1 berarti daya menariknya melebihi rata-rata wilayah
Apabila 留j < 1 berarti daya menariknya lebih rendah dari rata-rata
wilayah.
MENGHITUNG DAYA MENARIK
X1 X2 Total
X1 1,33 1,00 2,33
X2 0,33 1,50 1,83
Total 1,66 2,50 4,16
Menghitung indeks daya menarik
Matriks Pengganda
留 =
i bij
(1/n)i j bij
留1 =
1,66
(1/2) (4,166)
= 0,7998
留2 =
2,50
(1/2) (4,166)
= 1,2002
14. MENGHITUNG DERAJAT KEPEKAAN
硫 =
j bij
(1/n)i j bij
硫1 =
2,333
(1/2) (4,166)
= 1,12
硫2 =
1,833
(1/2) (4,166)
= 0,88
Kesimpulan:
Sektor pertanian (1) memiliki derajat kepekaan lebih tinggi daripada
rata-rata wilayah, sedangkan sektor industri (2) memiliki daya menarik
yang lebih tinggi dari rata-rata wilayah
Sektor industri lebih bisa menarik sektor-sektor hulu (belakang) untuk
berkembang
Sektor pertanian lebih merangsang sektor-sektor hilir (depan) untuk
berkembang