What is Reactive Streams? What if a subscriber was very slow in asynchronous stream processing? In this talk we will briefly introduce you to the basics of Reactive Streams and the importance of back-pressure and then explain the architecture (implementations) of Spark Streaming back-pressure.
1 of 42
Downloaded 13 times
More Related Content
Is spark streaming based on reactive streams?
1. Is Spark Streaming based on
Reactive Streams?
2016-12-14 もう1つのHadoop Summit
13. 仕様 - Flow API
public final class Flow {
@FunctionalInterface
public static interface Publisher<T> {
public void subscribe(Subscriber<? super T> subscriber);
}
public static interface Subscription {
public void request(long n);
public void cancel();
}
14. 仕様 - Flow API
public static interface Subscriber<T> {
public void onSubscribe(Subscription subscription);
public void onNext(T item);
public void onError(Throwable throwable);
public void onComplete();
}
public static interface Processor<T,R> extends Subscriber<T>, Publisher<R> {}
}
21. SparkはReactive Streamsに遵守してる?
答えは、No!!
Though we will just take inspiration from some of the design
principles of the Reactive Streams specification, we do not
intend for Spark's internals to comply with this specification.
Reactive Streamsの設計方針からインスピレーションを受けていますが、私たち
はSparkの内部がこの仕様を遵守するつもりはありません。
要約すると???
"4.1 Back-pressure signaling". Spark Streaming back-pressure signaling.
https://docs.google.com/document/d/1ZhiP_yBHcbjifz8nJEyPJpHqxB1FT6s8-Zk
7sAfayQw/edit?usp=sharing, (参照 2016-12-11)