際際滷

際際滷Share a Scribd company logo
 Trasformar los siguientes coordenadas rectangulares a coordenadas polares. 
A) (2,8) primero lo hacemos por definici坦n 
 = tan1( 
 
 
) 2 = 2 + 2 
8 
2 
 = tan1( 
) 2 = (2)族 + (8)族 
 = tan1(4) 2 = 4 + 64 
 = 75.96  = 68 
 = 217 
Luego transformando a radiaciones se tiene que 
  180 
 75  96 
= 75  96 
180 
(217,75 96) 
180 
B) (5, 6) 
 = tan1( 
6 
5 
) 
 = 50.19属 2 = (5)族 + (6)族 
2 = 25 + 36 
 = 61 
61, 50.19  
180 
C) (2, 
1 
5 
) 2 = (2) 族 + (1 
5 
)族 
 = tan1( 
1 
5 
2 
) 2 = 2 + 1 
25 
 = tan1( 1 
52 
) 2 = 51 
25 
 = 8. 04属  = 51 
25 
=  = 51 
5
Tenemos que entonces transformando a radiales 
  180 
 8.04 
= 8.04 
180 
(51 
5 
, 8.04) 
180 
 Calcular el 叩rea que encierra la curva de ecuaci坦n polar r = + 
 = 1 +  (2, 
 
2 
) 
  = 0 
1 +  = 0 
 = 1 (0,0) 
 = 1 (1) 
 =   
2 
sen  =  
2 
=   
2 
A = 2 
 
 
2 
0 
Producto notable 
 (1 + )2 
 
2 
0 
A =  (1 + 2 + 20) 
Luego por identidad trigonom辿trica 
1  2 
2 = 
2 
A= (1 + 2 + 1 
2 
) do 
Por 
A = ( 
1 + 4 + 1  2 
2 
)  
Se reducen t辿rminos semejantes 
A = 
1 
2 
 
(3 + 4  2) 
 
2 
0 
A = 
1 
2 
[3  危  2]  
 
2 
0 
2
 = 
1 
2 
[3 ( 
 
2 
)  4 cos ( 
 
2 
) 属  2 ( 
 
2 
) 属 ] + 4 cos(0) 
2 
 = 
1 
2 
3 
2 
[ 
+ 4] 
 = 
1 
2 
3 + 8 
[ 
2 
] 
 = 
3 + 8 
 
 Transformar los siguientes puntos de coordenadas rectangulares a coordenadas 
polares 
) (2, 
 
4 
) 
2 
2 
=  = 2 
( 
 =  = 2 
= 2  
4 
 = 2 ( 
 
4 
)  = 2 
2 
2 
 = 2 (2, 2) 
) (8, 
3 
2 
) 
= 8 ( 
3 
2 
) 
 = 8 ( 
3 
2 
) = 0  = 8 (0,8) 
) ( 
1 
2 
, 
5 
4 
) 
= 
1 
2 
cos ( 
5 
4 
) ;= 
1 
2 
2 
2 
( 
2 
4 
) ==  
 = 
1 
2 
 ( 
5 
4 
) ;  = 
1 
2 
( 
2 
2 
) =  =  
2 
4 
2 
4 
( 
2 
4 
,  
) 
 Calcular el 叩rea que encierra la curva de ecuaci坦n polar r= 4 cos(200) 
 = 4(2) Cambio de variable 
4(2) = 0  = 2  =  
2 
2 = 0 
 = 0
 =   孫(0) 
 = 
 
2 
 = 
5 
4 
  = 
7 
4 
  = 
 
4 
 = 
3 
4 
 
3 
4 
 
4 
5 
4 
7 
4 
 = 0 ( 
1 
2 
 
4 
)  [4(2)] 
 
4 
2 
 
 
4 
 = 08  族2  
 
4 
 
4 
 = 2(8)  族 2  
0 
Por identidad trigonom辿trica 
1 + 躯2 
 = 16  [ 
2 
] 
 
4 
0 
 
 
4 
 = 8  (1 +  + 2) 
0 
 
 = 8 [0+(2) 
2 
] 
 
4 
0 
 = 8 [ 
 
4 
+  [2 ( 
 
4 
)]  (0)] 
 = 2族  = 8族 
Transformar a coordenadas rectangulares 
 = 2 = (3)  = 2(2 + )  = 2[2  2]
Por identidad trigonom辿trica 
 = 2[(2族  1)]  20族 
 = [(2族  1)  20族] 
 = 2[(2族  1)  2(1  族)] 
Propiedad distributiva 
 = 2[2続    2 + 2続] 
 = 2[4続  3] 
2 = 83  6 
族 = 2[4族  3] 
 = 2 ( 
 
 
4  族  3 
) [ 
2 
] 
4 = 2  [4  族  3族] 
( 族 + 4族)族 = 2  [4  族  3( 族 + 4族)] 
( 族 + β)族 = 2  [  族  3 2 3β] 
( 族 + β)族 = 2  [ 族  3β] 
 Transformar las siguientes ecuaci坦n de variable 
 族  2β = 4( +)族 
=  ,  =  
()族  2()族 = 4[ + ]族 
2  222  = 4 [ ( 
 
 
) +  ( 
 
 
2 
)] 
族[族  2族] = 4( +)族 
族 [( 
 
) 族  2 ( 
 
) 族] = 4( +)族 
族 [ 
 族  2β 
2 
] = 4( +)族  族  2β = 4( +)族 
2  22 = 4(2+ 2   + 2) 2 22 = 4 2+ 8   + 42 
3  族 + 8   + 64族 = 0
Isabel

More Related Content

Isabel

  • 1. Trasformar los siguientes coordenadas rectangulares a coordenadas polares. A) (2,8) primero lo hacemos por definici坦n = tan1( ) 2 = 2 + 2 8 2 = tan1( ) 2 = (2)族 + (8)族 = tan1(4) 2 = 4 + 64 = 75.96 = 68 = 217 Luego transformando a radiaciones se tiene que 180 75 96 = 75 96 180 (217,75 96) 180 B) (5, 6) = tan1( 6 5 ) = 50.19属 2 = (5)族 + (6)族 2 = 25 + 36 = 61 61, 50.19 180 C) (2, 1 5 ) 2 = (2) 族 + (1 5 )族 = tan1( 1 5 2 ) 2 = 2 + 1 25 = tan1( 1 52 ) 2 = 51 25 = 8. 04属 = 51 25 = = 51 5
  • 2. Tenemos que entonces transformando a radiales 180 8.04 = 8.04 180 (51 5 , 8.04) 180 Calcular el 叩rea que encierra la curva de ecuaci坦n polar r = + = 1 + (2, 2 ) = 0 1 + = 0 = 1 (0,0) = 1 (1) = 2 sen = 2 = 2 A = 2 2 0 Producto notable (1 + )2 2 0 A = (1 + 2 + 20) Luego por identidad trigonom辿trica 1 2 2 = 2 A= (1 + 2 + 1 2 ) do Por A = ( 1 + 4 + 1 2 2 ) Se reducen t辿rminos semejantes A = 1 2 (3 + 4 2) 2 0 A = 1 2 [3 危 2] 2 0 2
  • 3. = 1 2 [3 ( 2 ) 4 cos ( 2 ) 属 2 ( 2 ) 属 ] + 4 cos(0) 2 = 1 2 3 2 [ + 4] = 1 2 3 + 8 [ 2 ] = 3 + 8 Transformar los siguientes puntos de coordenadas rectangulares a coordenadas polares ) (2, 4 ) 2 2 = = 2 ( = = 2 = 2 4 = 2 ( 4 ) = 2 2 2 = 2 (2, 2) ) (8, 3 2 ) = 8 ( 3 2 ) = 8 ( 3 2 ) = 0 = 8 (0,8) ) ( 1 2 , 5 4 ) = 1 2 cos ( 5 4 ) ;= 1 2 2 2 ( 2 4 ) == = 1 2 ( 5 4 ) ; = 1 2 ( 2 2 ) = = 2 4 2 4 ( 2 4 , ) Calcular el 叩rea que encierra la curva de ecuaci坦n polar r= 4 cos(200) = 4(2) Cambio de variable 4(2) = 0 = 2 = 2 2 = 0 = 0
  • 4. = 孫(0) = 2 = 5 4 = 7 4 = 4 = 3 4 3 4 4 5 4 7 4 = 0 ( 1 2 4 ) [4(2)] 4 2 4 = 08 族2 4 4 = 2(8) 族 2 0 Por identidad trigonom辿trica 1 + 躯2 = 16 [ 2 ] 4 0 4 = 8 (1 + + 2) 0 = 8 [0+(2) 2 ] 4 0 = 8 [ 4 + [2 ( 4 )] (0)] = 2族 = 8族 Transformar a coordenadas rectangulares = 2 = (3) = 2(2 + ) = 2[2 2]
  • 5. Por identidad trigonom辿trica = 2[(2族 1)] 20族 = [(2族 1) 20族] = 2[(2族 1) 2(1 族)] Propiedad distributiva = 2[2続 2 + 2続] = 2[4続 3] 2 = 83 6 族 = 2[4族 3] = 2 ( 4 族 3 ) [ 2 ] 4 = 2 [4 族 3族] ( 族 + 4族)族 = 2 [4 族 3( 族 + 4族)] ( 族 + β)族 = 2 [ 族 3 2 3β] ( 族 + β)族 = 2 [ 族 3β] Transformar las siguientes ecuaci坦n de variable 族 2β = 4( +)族 = , = ()族 2()族 = 4[ + ]族 2 222 = 4 [ ( ) + ( 2 )] 族[族 2族] = 4( +)族 族 [( ) 族 2 ( ) 族] = 4( +)族 族 [ 族 2β 2 ] = 4( +)族 族 2β = 4( +)族 2 22 = 4(2+ 2 + 2) 2 22 = 4 2+ 8 + 42 3 族 + 8 + 64族 = 0