ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
HCHL:
A route to Greener cake?
Dr Joe Bennett
20th May 2010
INTRODUCTION
Natural vanilla extract
• Over 180 compounds
 Principle component – vanillin (~85%)
• Vanilla orchid – pods and beans
Flavour
Fragrance
Pharmaceuticals
INTRODUCTION
Vanilla
Natural v Synthetic
• 12,000 tons per year
 0.5% - natural vanilla
 >99% - synthetic
$1200 - 4000 kg-1
~$15 kg-1
1Hocking, M. (1997) J. Chem. Educ. 74, 1055-1059
1
INTRODUCTION
Vanillin production
Ferulic acid metabolism
• Pseudomonas fluorescens
 Ferulic acid – sole carbon source2
• Ligation to coenzyme A
 Ligase HCLS
Hydroxycinnamoyl CoA Hydratase Lyase – HCHL
Hydration / ligation
P. fluorescens biofilm
2Narbad, A. et al (1998) Microbiology. 144, 1397-1405
INTRODUCTION
HCHL
Additional substrates3
3Mitra, A. et al (1999) Arch. Biochem. Biophys. 365, 10-16
INTRODUCTION
HCHL
-
Crotonases
INTRODUCTION
Crotonase superfamily
• Structurally related proteins4
ECH PVIAAVNGYALGGGCELAMMCDIIYAGEKAQFGQPEILLGTIPGA 173
HCHL PTIAMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGN 152
*.** ***:.:*** . : **: ..::* ** .** * **
Oxyanion hole
conserved
‘Catalytic’ Glu
conserved
‘Catalytic’ Glu NOT
conserved
4Bennett, J. et al (2007) Biochemistry. 46, 137-144
5Engel, C. et al (1998) J. Mol. Biol. 275, 847-859
• Parent – Enoyl CoA Hydratase (ECH)5
6Leonard, P. et al (2006) Acta. Cryst D. 60, 2343-2345
Tyr239
2.7
INTRODUCTION
HCHL model
Structure modelling
• Native HCHL structure6
 Ligand-bound ECH structure
 Feruloyl CoA
Glu-143: Water activation?
Ser-123: Lytic function?
Tyr-239: Substrate binding?
RESEARCH
RESEARCH
Experiments performed
• HCHL variants
 Cloning, transformation, expression, purification
Project outline
Wild
Type
S123A E143A S123A/E143A
Y239F Y239A
Michaelis-Menten
kinetics
X-ray Crystallography
Organic synthesis
[Substrate]
0 0.02 0.04 0.06 0.08
Rate
0
2
4
Parameter Value Std. Error
Enzyme Kinetics Data
MECHANISM
7Bennett, J. et al (2008) Biochem. J. 414. 281-289
RESEARCH
UV/Vis kinetics
Michaelis-Menten kinetics7
• Feruloyl CoA depletion – 400 nm
RESEARCH
Structural studies
Apo and holo-HCHL
• Native wild type HCHL
• No ligand
• Wild type HCHL
 Co-crystallised with feroloyl CoA
• Observations
 Vanillin
 Loop shift on ligand binding
 Second Tyr moves ~6 Å
RESEARCH
Structural studies
Density maps
Glu-143:
H-bonded to product
Tyr-239:
H-bonded to
product
Tyr-75:
H-bonded to
product
DISCUSSION
8Fraaije, M. et al (1998) Eur. J. Biochem. 253, 712-719
DISCUSSION
Examining mechanism
Vanillyl Alcohol Oxidase (VAO)8
Green: VAO
Blue: HCHL
Similar
substrate
O2+
Tyrosine
pincer
VAO mechanism – 4-(methoxymethyl) phenol9
9van den Heuvel, M. et al (2000) J. Biol. Chem. 275, 14799-14808
Quinone methide
Intermediate
DISCUSSION
Vanillyl alcohol oxidase
DISCUSSION
Quinone methide mechanism
Vanillin
Quinone
methide
enolate
• Substrate specificity: Tyr-75 and Tyr-239
SUMMARY
HCHL
Glu-143:
Essential for activity
• Similarities to VAO – not obvious from apo-enzyme
• Quinone methide - possible intermediate
Ser-123:
No major role in catalysis
ACKNOWLEDGEMENTS
Gideon Grogan
Marek Brzozowski
Johan Turkenburg
YSBL staff
BBSRC

More Related Content

J Bennett PhD presentation

  • 1. HCHL: A route to Greener cake? Dr Joe Bennett 20th May 2010
  • 3. Natural vanilla extract • Over 180 compounds  Principle component – vanillin (~85%) • Vanilla orchid – pods and beans Flavour Fragrance Pharmaceuticals INTRODUCTION Vanilla
  • 4. Natural v Synthetic • 12,000 tons per year  0.5% - natural vanilla  >99% - synthetic $1200 - 4000 kg-1 ~$15 kg-1 1Hocking, M. (1997) J. Chem. Educ. 74, 1055-1059 1 INTRODUCTION Vanillin production
  • 5. Ferulic acid metabolism • Pseudomonas fluorescens  Ferulic acid – sole carbon source2 • Ligation to coenzyme A  Ligase HCLS Hydroxycinnamoyl CoA Hydratase Lyase – HCHL Hydration / ligation P. fluorescens biofilm 2Narbad, A. et al (1998) Microbiology. 144, 1397-1405 INTRODUCTION HCHL
  • 6. Additional substrates3 3Mitra, A. et al (1999) Arch. Biochem. Biophys. 365, 10-16 INTRODUCTION HCHL
  • 7. - Crotonases INTRODUCTION Crotonase superfamily • Structurally related proteins4 ECH PVIAAVNGYALGGGCELAMMCDIIYAGEKAQFGQPEILLGTIPGA 173 HCHL PTIAMVNGWCFGGGFSPLVACDLAICADEATFGLSEINWGIPPGN 152 *.** ***:.:*** . : **: ..::* ** .** * ** Oxyanion hole conserved ‘Catalytic’ Glu conserved ‘Catalytic’ Glu NOT conserved 4Bennett, J. et al (2007) Biochemistry. 46, 137-144 5Engel, C. et al (1998) J. Mol. Biol. 275, 847-859 • Parent – Enoyl CoA Hydratase (ECH)5
  • 8. 6Leonard, P. et al (2006) Acta. Cryst D. 60, 2343-2345 Tyr239 2.7 INTRODUCTION HCHL model Structure modelling • Native HCHL structure6  Ligand-bound ECH structure  Feruloyl CoA Glu-143: Water activation? Ser-123: Lytic function? Tyr-239: Substrate binding?
  • 10. RESEARCH Experiments performed • HCHL variants  Cloning, transformation, expression, purification Project outline Wild Type S123A E143A S123A/E143A Y239F Y239A Michaelis-Menten kinetics X-ray Crystallography Organic synthesis [Substrate] 0 0.02 0.04 0.06 0.08 Rate 0 2 4 Parameter Value Std. Error Enzyme Kinetics Data MECHANISM
  • 11. 7Bennett, J. et al (2008) Biochem. J. 414. 281-289 RESEARCH UV/Vis kinetics Michaelis-Menten kinetics7 • Feruloyl CoA depletion – 400 nm
  • 12. RESEARCH Structural studies Apo and holo-HCHL • Native wild type HCHL • No ligand • Wild type HCHL  Co-crystallised with feroloyl CoA • Observations  Vanillin  Loop shift on ligand binding  Second Tyr moves ~6 Ã…
  • 13. RESEARCH Structural studies Density maps Glu-143: H-bonded to product Tyr-239: H-bonded to product Tyr-75: H-bonded to product
  • 15. 8Fraaije, M. et al (1998) Eur. J. Biochem. 253, 712-719 DISCUSSION Examining mechanism Vanillyl Alcohol Oxidase (VAO)8 Green: VAO Blue: HCHL Similar substrate O2+ Tyrosine pincer
  • 16. VAO mechanism – 4-(methoxymethyl) phenol9 9van den Heuvel, M. et al (2000) J. Biol. Chem. 275, 14799-14808 Quinone methide Intermediate DISCUSSION Vanillyl alcohol oxidase
  • 18. • Substrate specificity: Tyr-75 and Tyr-239 SUMMARY HCHL Glu-143: Essential for activity • Similarities to VAO – not obvious from apo-enzyme • Quinone methide - possible intermediate Ser-123: No major role in catalysis