This presentation contains some basic idea of Jacobi method having few examples and program of Jacobi method.
1 of 20
Downloaded 360 times
More Related Content
Jacobi method
2. Convert the system:
into the equivalent system: dCxx
3333132131
2323122121
1313212111
bxaxaxa
bxaxaxa
bxaxaxa
緒
緒
緒
33
3
2
33
32
1
33
31
3
22
2
3
22
23
1
22
21
2
11
1
3
11
13
2
11
12
1
a
b
x
a
a
x
a
a
x
a
b
x
a
a
x
a
a
x
a
b
x
a
a
x
a
a
x
BAx
5. Consider the two-by-two system
Start with
Simultaneous updating
New values of the variables are not used until a
New iteration step is begun
4
11
3
4
1
3
2
1
4
11
3
4
1
3
2
1
)1()2(
)1()2(
緒緒
緒緒
xy
yx
62
62
緒
緒
yx
yx
3
2
1
3
2
1
xy
yx
)1(
x
)1(
y
)2(
y
)2(
x
7. The set of equations:
020i12i5i-
2-12i-20i0i
105i-0i9i
321
321
321
緒
緒
緒
Let us write for i1, i2 and i3 as
)(.
)(
)(
3i60000i0.2500/2012ii5i
20.6000i0.1000-/2012i2-i
10.5556i1.1111/95i10i
21313
232
231
緒
緒
緒
Let us make an initial guess as i1 = 0.0; i2 =0.0 and i3 = 0.0
First iteration results: i1 = 1.1111; i2 =-0.1000 and i3 = 0.0
8. First iteration results: i1 = 1.1111; i2 =-0.1000 and i3 = 0.0
Second iteration results: i1 = 1.1111; i2 =-0.1000 and i3 = 0.22
Third iteration results: i1 = 1.23; i2 = 0.03 and i3 = 0.22
Fourth iteration results: i1 = 1.23 ; i2 = 0.03 and i3 = 0.33
Fifth iteration results: i1 = 1.29; i2 = 0.1 and i3 = 0.33
Sixth iteration results: i1 = 1.29; i2 = 0.1 and i3 = 0.38
)(.
)(
)(
3i60000i0.2500/2012ii5i
20.6000i0.1000-/2012i2-i
10.5556i1.1111/95i10i
21313
232
231
緒
緒
緒
9. Consider the following set of equations.
15
11
25
6
83
102
311
210
432
4321
4321
321
xxx
xxxx
xxxx
xxx
Convert the set Ax = b in the form of x = Tx + c.
8
15
8
1
8
3
10
11
10
1
10
1
5
1
11
25
11
3
11
1
11
1
5
3
5
1
10
1
324
4213
4312
321
xxx
xxxx
xxxx
xxx
12. Results:
iteration 0 1 2 3
0.0000 0.6000 1.0473 0.9326
0.0000 2.2727 1.7159 2.0530
0.0000 -1.1000 -0.8052 -1.0493
0.0000 1.8750 0.8852 1.1309
)( k
x1
)( k
x2
)( k
x3
)( k
x4
13. Solve the linear system by Jacobis method
4x -y + z = 7
4x -8y+ z = -21
-2x + y + 5z = 15.
From the system of linear equation we get:
.
5
yx215
z
,
8
zx421
y
,
4
zy7
x
1n1n
n
1)(n1)(n
n
1)(n1)(n
n
If we start with (x0, y0, z0) = (0, 0, 0),
.
5
yx215
z
,
8
zx421
y
,
4
zy7
x
15. 5x 2y + 3z = -1
-3x + 9y + z =2
2x - y -7z = 3
Solve the linear system by Jacobis method
Continue the iterations until two successive approximations are identical
when rounded to
three significant digits.
To begin, write the system in the form
If we start with (x0, y0, z0) = (0, 0, 0),
.
7
yx23
z
,
9
zx32
y
,
5
z3y21
x