際際滷

際際滷Share a Scribd company logo
A Bandit Approach to Multiple Testing
with False Discovery Control
Jamieson and Jain, NIPS 2018
Dec. 1th, 2018 @Ichimura Seminar
Jamieson_Jain2018
n
nUnited States Food & Drug Administration (FDA)
1. 2. 3. 4. 5.
6. 7. 8
n
n
n
Adaptive Design
nFDA
nClinical Trial: Hao et al. Nature 2008, Rocklin et al. Science 2017.
nEconomics: Hahn, Hirano and Karlan, Journal of Business & Economic Statistics
2011.
n 9 Adaptive Design Methods in Clinical Trials Chow and Chang,
2012
n Multi-armed Bandit Problem; MAB
n MAB ! = 1,2, ´ . (
n ^K ̄
n )
n exploration
exploitation
n
n
n ! = 1,2, ´ , ' () *)
!? = arg max)( 2,3,´,4 *)
n 5 = 1,2, ´ ! = !(5) ()
8)(5)
n 9 !? ?;?(9) (< =
?[ ?;? 9 』 !?]
n 9 fixed budget
n
? ! ( (0,1) !
?
? (
? ?+?
( 』 .?
+ ! 0[(]
nMachine Learning:
and , 2016
nEconomics:
Fudenberg and He, Econometrica 2018.
? Sofia S. Villar and William F. Rosenberger (2017), Covariate-adjusted response-adaptive
randomization for multi-arm clinical trials using a modified forward looking Gittins index
rule, Biometrics
? Adam Smith and Sofia S. Villar (2017), Bayesian adaptive bandit-based designs using the
Gittins index for multi-armed trials with normally distributed endpoints, Journal of
Applied Statistics
? Yusuke Narita and Shota Yasui and Kohei Yata (2019), Efficient Counterfactual Learning
from Bandit Feedback, AAAI
2 1 2 t
3 1 1 2
2 1 1
2
1 2 multiple comparison
n
n
http://www.med.osaka-u.ac.jp/pub/kid/clinicaljournalclub1.html
A Bandit Approach to Multiple Testing with False Discovery Control
n A Bandit Approach to Multiple Testing with False Discovery Control, Jamieson and Jain,
Neural Information Processing Systems (NIPS) 2018.
? 3
n
?
false alarm
n
n ! " 1
? " # ( ! ? 1, ´ , ! )*,+ ゛ -*
? )*,+ ( 0,1 / 0 )*,+ = 2*
n 23
?/ = # ( ! : 2* > 23 , ?3 = # ( ! : 2* = 23 = ! ? ?/
? # ( [!] 2* ?/ .
? ?/ : 23
? ?3 : 23
" :+ ? [!]
(# ( :+ # ( ?/ )
False Alarm
n !(? false alarm |$_%”?_0 |
%(? %−! |$_%”?_1 | |?_1 |
n false alarm |$_%”?_0 | %(?
%−! |$_%”?_1 | |?_1 |
False Alarm
n False alarm
! ( (0,1) ( () )*+
,
, -.)
/ ( ? 1
23”?6
23 ‥+
+ ! FDR-!
! ( (0,1) ( () )*+
,
, -.)
? “;*+
<
=; ” ?. 』 ? + ! FWER-!
1 False Discovery Rate, FDR-!
2 Family-wise Error Rate, FWER-!
True Discovery
n True discovery
! ( (0,1) F( () )=1
+
, ,0) - D
.
/0”?0
?1
+ 1 ? !-0 − - 1 8 !
! ( (0,1) F( () )=1
+
, ,0) - D
? ?1 ? /0 + 1 ? !-0 − - 1 8 !
3 True Positive Rate, TPR-!, -
4 Family-wise Probability of Detection, FWPD-!, -
n FWER-! FDR-!
n FWPD-!, " TPR-!, "
n
n !" ?1 statistical power 2
n 0
n
5 False Discovery Rate, FDR-%
% ( (0,1) FDR-% FWER-%
+ ( ,- -=1
/
, 00) " ( ? +
- ( ? 1 0 0 !" ? [/]
+ + TPR-%, 5 FWPD-%, FWPD-%
5 ( ?
n
n {FDR-!, FWER-!} {TPR-!, ", FWPD-! , "}
2
? 2 FDR-!+ TPR-!, " FDR-!+ FWPD-! , " FWER-!+ TPR-!, " FWER-!+
FWPD-! , "
? {FDR-!, FWER-!} 2 {TPR-!, ", FWPD-! , "}
1 21
?
n ?1 = & ? ?0 confidence parameter!
Δ ? min
.(?1
0. ? 00
n 2 2!
"#
2$ ( (0,1] # ( ?0 ? "# + $ + $
n Bonferroni selection rule: p "1 + "2 + ? + "02 2 #2
123 = #: "# + 6/0 .
n FWER FDR
9 123 ” ?0 + ? “#(?0
"# + 6/0 + 6
?0
0
+ 6.
★ FDR
n BH procedure: 2 FDR 21
n 2 Upper confidence bound (UCB) 2 3
? Upper confidence bound Hoeffding 2
? UCB p
n anytime confidence interval
? !"#,%: & ' .
? For any (, ?(”%,-
.
!"#,% ? "# + 1 &, ( − 1 ? (.
n 1(&, () ( 67
1 &, ( +
67 log log; 2& /(
&
.
★
Jamieson_Jain2018
n !": FDR
n ?": FWER
n $" %"
n FDR !" upper confidence bound &"
n FWER FDR
False Alarm Control
n
n !" FDR 7
? 2 confidence bound #(", &)
(),* ? sup / ( 0,1 : 45),* ? 57 + # ", / + log< 2" exp ?" 45),* ? 57
<
/AB .
? 5) = 57 E ( ?7 (),* anytime sub-
uniformly distributed p-value
? “*IJ
K
(),* + L + L.
? p always-valid p-values
? 5) > 57 E ( ?J (),* *IJ
K
5) = 57 E
# ?,? 2
?Benjamini-Hochberg (BH) procedure
? 2p 8
! " ,$ % & + ! ( ,$ ) & + ? + ! + ,$ , & .
? 2 ./ 0128
./ = max /: ! 8 ,$ 9 ,: 9 ;
+ <
/
=
>=? 012 = @: !A,$B & + <
./
=
.
? 8
C / = @: !A,$B & + <
/
=
= @: DEA,$B & ? G HA I , <
/
=
− KL .
./ = max /: C(/) − / >=? 012 = C(./)
?Algorithm12 0& anytime p-values2BH-procedure8 2
FDR 8 Lemma 1
n ?" FWER
? ?$
? 29FWER+FWPD 2
? Bonferroni correction
? “'(?)
“"*$
+
?-'," ? 0 1,
2
3 ? ?$
− -5 + 7
'(?)
? “"*$
+
?-'," ? 0 1,
2
?$
− -5 + ?5
2
?5
.
?$ 9"
Sampling Strategies
to Boost Statistical Power
n
? !" ?" $% &%
n TPR-' ( setting:
?
? = + ( ?1: 01+,3+ " + 5 3+ " , ' − 1+, ?" ( ? .
? 53anytime confidence bound : ? − 1 ? ' ?1
? Δ = min
+(?1
1+ ? 10 0 min
+(?
1+ − 10 + Δ 0 1 ? A(')
D
"=1
±
F $" ( ?0, ? ? !" + D
"=1
±
F $" ( ?0, 01$",3$" " + 5 3$"
" , ' − 10 + Δ
+ I ?0 Δ?2 log log Δ?2/'
n FWPD-!, " setting:
? 31
?1 ? &' ? max
,(?1”&'
/
01,,3, ' + 5 3, ' , ! − min
,(?1”&'
/
1, − 10 + Δ.
? ?1 1 3 <' − ?1 1
? “,(?1
“'=1
±
01,,' + 5 ',
!
<'
< 1, + C
D(?1
? “'=1
±
01,,' + 5 ',
!
<'
< 1, + ?1
!
<'
.
?E &F
n {FDR-!, FWER-!} {TPR-!, FWPD-!}
n 2
? near-optimal
near-optimal
?
3
Jamieson_Jain2018
n
Jarvis Haupt, Rui M Castro, and Robert Nowak. Distilled sensing: Adaptive sampling for
sparse detection and estimation. IEEE Transactions on Information Theory , 57(9):6222C
6235, 2011.
n ?" FWER+FWPD top-k identification problem 3
n # 4
Lijie Chen, Jian Li, and Mingda Qiao. Nearly instance optimal sample complexity bounds
for top-k arm selection. In Artificial Intelligence and Statistics , pages 101C110, 2017.
n
Ramesh Johari, Leo Pekelis, and David J Walsh. Always valid inference: Bringing
sequential analysis to a/b testing. arXiv preprint arXiv:1512.04922 , 2015.
n
┨ confidence bound
┨ 5 3 ?" = $ ? ?& confidence parameter'
Δ ? min
-(?/
0- ? 0&
1 (FDR, TPR)
?1 ?0 ?1 = % ( ' : )% > )0 ?0 = % ( ' : )% + )0 3
Δ% = )% ? )0 ./0 % ( ?1
Δ = min
%(?1
Δ%
Δ% = min
4(?1
)4 ? )% = Δ + )0 ? )% ./0 % ( ?0
6 ( ? 8
96”?0
96 ‥1
+ < 1 ? 2< 3
> 6
T ? min 'Δ?2 log log
Δ?2
<
, E
%(?0
Δ%
?2
log log Δ%
?2
/< + E
%(?1
Δ%
?2
log log Δ%
?2
/<
G'H 8
96 ” ?1
?1
− 1 ? < ./0 GJJ 6 − >.
2 (FDR, FWPD)
! ( ? $
%!”?0
%! ‥1
+ , 7 1 ? 5, 3
/
T ? 2 ? ?1 Δ?2 log max ?1 , log log 2/, log Δ?2 /, + ?1 Δ?2 log log Δ?2 /,
>2? ?1 ? %! ABC >DD ! − /.
3 (FWER, FWPD)
! ( ? $
%!”?0
%! ‥1
+ , 3 1 ? 6,
! ( ? ?0 ” ?! = ? 8 2
T ? 5 ? ?6 Δ89 log max ?6 , log log 5/, log Δ89 /,
+ ?6 Δ89 log max 5 ? 1 ? 2, 1 + 4, ?6 , log log(5/, log Δ89 /,
F5G ?1 ? %! IJK FLL ! − 2
3 ! − 2 ?6 = ?N
4 (FWER, TPR)
! ( ? $
%&”?)
%& ‥+
+ - 3 9 1 ? 7-
! ( ? ?1 ” ?3 = ? 6 3
T ? 9 ? ?+ Δ;< log log Δ;< /-
+ ?+ Δ;< log max 9 ? 1 ? E ?+ , log log(9/- log Δ;< /-
H9I$
?3 ” ?+
?+
− 1 ? -KLM HNN ! − 6
E = (1 ? 3- ? 2- log 1/- / ?+
Jamieson_Jain2018
Jamieson_Jain2018
n
n

More Related Content

Jamieson_Jain2018

  • 1. A Bandit Approach to Multiple Testing with False Discovery Control Jamieson and Jain, NIPS 2018 Dec. 1th, 2018 @Ichimura Seminar
  • 3. n nUnited States Food & Drug Administration (FDA) 1. 2. 3. 4. 5. 6. 7. 8
  • 5. nClinical Trial: Hao et al. Nature 2008, Rocklin et al. Science 2017. nEconomics: Hahn, Hirano and Karlan, Journal of Business & Economic Statistics 2011. n 9 Adaptive Design Methods in Clinical Trials Chow and Chang, 2012
  • 6. n Multi-armed Bandit Problem; MAB n MAB ! = 1,2, ´ . ( n ^K ̄ n ) n exploration exploitation
  • 7. n n n ! = 1,2, ´ , ' () *) !? = arg max)( 2,3,´,4 *) n 5 = 1,2, ´ ! = !(5) () 8)(5) n 9 !? ?;?(9) (< = ?[ ?;? 9 』 !?] n 9 fixed budget
  • 8. n ? ! ( (0,1) ! ? ? ( ? ?+? ( 』 .? + ! 0[(]
  • 9. nMachine Learning: and , 2016 nEconomics: Fudenberg and He, Econometrica 2018.
  • 10. ? Sofia S. Villar and William F. Rosenberger (2017), Covariate-adjusted response-adaptive randomization for multi-arm clinical trials using a modified forward looking Gittins index rule, Biometrics ? Adam Smith and Sofia S. Villar (2017), Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints, Journal of Applied Statistics ? Yusuke Narita and Shota Yasui and Kohei Yata (2019), Efficient Counterfactual Learning from Bandit Feedback, AAAI
  • 11. 2 1 2 t 3 1 1 2 2 1 1 2 1 2 multiple comparison n n http://www.med.osaka-u.ac.jp/pub/kid/clinicaljournalclub1.html
  • 12. A Bandit Approach to Multiple Testing with False Discovery Control
  • 13. n A Bandit Approach to Multiple Testing with False Discovery Control, Jamieson and Jain, Neural Information Processing Systems (NIPS) 2018. ? 3 n ? false alarm n
  • 14. n ! " 1 ? " # ( ! ? 1, ´ , ! )*,+ ゛ -* ? )*,+ ( 0,1 / 0 )*,+ = 2* n 23 ?/ = # ( ! : 2* > 23 , ?3 = # ( ! : 2* = 23 = ! ? ?/ ? # ( [!] 2* ?/ . ? ?/ : 23 ? ?3 : 23 " :+ ? [!] (# ( :+ # ( ?/ )
  • 15. False Alarm n !(? false alarm |$_%”?_0 | %(? %−! |$_%”?_1 | |?_1 | n false alarm |$_%”?_0 | %(? %−! |$_%”?_1 | |?_1 |
  • 16. False Alarm n False alarm ! ( (0,1) ( () )*+ , , -.) / ( ? 1 23”?6 23 ‥+ + ! FDR-! ! ( (0,1) ( () )*+ , , -.) ? “;*+ < =; ” ?. 』 ? + ! FWER-! 1 False Discovery Rate, FDR-! 2 Family-wise Error Rate, FWER-!
  • 17. True Discovery n True discovery ! ( (0,1) F( () )=1 + , ,0) - D . /0”?0 ?1 + 1 ? !-0 − - 1 8 ! ! ( (0,1) F( () )=1 + , ,0) - D ? ?1 ? /0 + 1 ? !-0 − - 1 8 ! 3 True Positive Rate, TPR-!, - 4 Family-wise Probability of Detection, FWPD-!, -
  • 18. n FWER-! FDR-! n FWPD-!, " TPR-!, " n
  • 19. n !" ?1 statistical power 2 n 0 n 5 False Discovery Rate, FDR-% % ( (0,1) FDR-% FWER-% + ( ,- -=1 / , 00) " ( ? + - ( ? 1 0 0 !" ? [/] + + TPR-%, 5 FWPD-%, FWPD-% 5 ( ?
  • 20. n n {FDR-!, FWER-!} {TPR-!, ", FWPD-! , "} 2 ? 2 FDR-!+ TPR-!, " FDR-!+ FWPD-! , " FWER-!+ TPR-!, " FWER-!+ FWPD-! , " ? {FDR-!, FWER-!} 2 {TPR-!, ", FWPD-! , "} 1 21 ? n ?1 = & ? ?0 confidence parameter! Δ ? min .(?1 0. ? 00
  • 21. n 2 2! "# 2$ ( (0,1] # ( ?0 ? "# + $ + $ n Bonferroni selection rule: p "1 + "2 + ? + "02 2 #2 123 = #: "# + 6/0 . n FWER FDR 9 123 ” ?0 + ? “#(?0 "# + 6/0 + 6 ?0 0 + 6. ★ FDR n BH procedure: 2 FDR 21
  • 22. n 2 Upper confidence bound (UCB) 2 3 ? Upper confidence bound Hoeffding 2 ? UCB p
  • 23. n anytime confidence interval ? !"#,%: & ' . ? For any (, ?(”%,- . !"#,% ? "# + 1 &, ( − 1 ? (. n 1(&, () ( 67 1 &, ( + 67 log log; 2& /( & . ★
  • 25. n !": FDR n ?": FWER n $" %" n FDR !" upper confidence bound &" n FWER FDR
  • 26. False Alarm Control n n !" FDR 7 ? 2 confidence bound #(", &) (),* ? sup / ( 0,1 : 45),* ? 57 + # ", / + log< 2" exp ?" 45),* ? 57 < /AB . ? 5) = 57 E ( ?7 (),* anytime sub- uniformly distributed p-value ? “*IJ K (),* + L + L. ? p always-valid p-values ? 5) > 57 E ( ?J (),* *IJ K 5) = 57 E # ?,? 2
  • 27. ?Benjamini-Hochberg (BH) procedure ? 2p 8 ! " ,$ % & + ! ( ,$ ) & + ? + ! + ,$ , & . ? 2 ./ 0128 ./ = max /: ! 8 ,$ 9 ,: 9 ; + < / = >=? 012 = @: !A,$B & + < ./ = . ? 8 C / = @: !A,$B & + < / = = @: DEA,$B & ? G HA I , < / = − KL . ./ = max /: C(/) − / >=? 012 = C(./) ?Algorithm12 0& anytime p-values2BH-procedure8 2 FDR 8 Lemma 1
  • 28. n ?" FWER ? ?$ ? 29FWER+FWPD 2 ? Bonferroni correction ? “'(?) “"*$ + ?-'," ? 0 1, 2 3 ? ?$ − -5 + 7 '(?) ? “"*$ + ?-'," ? 0 1, 2 ?$ − -5 + ?5 2 ?5 . ?$ 9"
  • 29. Sampling Strategies to Boost Statistical Power n ? !" ?" $% &% n TPR-' ( setting: ? ? = + ( ?1: 01+,3+ " + 5 3+ " , ' − 1+, ?" ( ? . ? 53anytime confidence bound : ? − 1 ? ' ?1 ? Δ = min +(?1 1+ ? 10 0 min +(? 1+ − 10 + Δ 0 1 ? A(') D "=1 ± F $" ( ?0, ? ? !" + D "=1 ± F $" ( ?0, 01$",3$" " + 5 3$" " , ' − 10 + Δ + I ?0 Δ?2 log log Δ?2/'
  • 30. n FWPD-!, " setting: ? 31 ?1 ? &' ? max ,(?1”&' / 01,,3, ' + 5 3, ' , ! − min ,(?1”&' / 1, − 10 + Δ. ? ?1 1 3 <' − ?1 1 ? “,(?1 “'=1 ± 01,,' + 5 ', ! <' < 1, + C D(?1 ? “'=1 ± 01,,' + 5 ', ! <' < 1, + ?1 ! <' . ?E &F
  • 31. n {FDR-!, FWER-!} {TPR-!, FWPD-!} n 2 ? near-optimal near-optimal ? 3
  • 33. n Jarvis Haupt, Rui M Castro, and Robert Nowak. Distilled sensing: Adaptive sampling for sparse detection and estimation. IEEE Transactions on Information Theory , 57(9):6222C 6235, 2011. n ?" FWER+FWPD top-k identification problem 3 n # 4 Lijie Chen, Jian Li, and Mingda Qiao. Nearly instance optimal sample complexity bounds for top-k arm selection. In Artificial Intelligence and Statistics , pages 101C110, 2017. n Ramesh Johari, Leo Pekelis, and David J Walsh. Always valid inference: Bringing sequential analysis to a/b testing. arXiv preprint arXiv:1512.04922 , 2015.
  • 34. n ┨ confidence bound ┨ 5 3 ?" = $ ? ?& confidence parameter' Δ ? min -(?/ 0- ? 0&
  • 35. 1 (FDR, TPR) ?1 ?0 ?1 = % ( ' : )% > )0 ?0 = % ( ' : )% + )0 3 Δ% = )% ? )0 ./0 % ( ?1 Δ = min %(?1 Δ% Δ% = min 4(?1 )4 ? )% = Δ + )0 ? )% ./0 % ( ?0 6 ( ? 8 96”?0 96 ‥1 + < 1 ? 2< 3 > 6 T ? min 'Δ?2 log log Δ?2 < , E %(?0 Δ% ?2 log log Δ% ?2 /< + E %(?1 Δ% ?2 log log Δ% ?2 /< G'H 8 96 ” ?1 ?1 − 1 ? < ./0 GJJ 6 − >.
  • 36. 2 (FDR, FWPD) ! ( ? $ %!”?0 %! ‥1 + , 7 1 ? 5, 3 / T ? 2 ? ?1 Δ?2 log max ?1 , log log 2/, log Δ?2 /, + ?1 Δ?2 log log Δ?2 /, >2? ?1 ? %! ABC >DD ! − /.
  • 37. 3 (FWER, FWPD) ! ( ? $ %!”?0 %! ‥1 + , 3 1 ? 6, ! ( ? ?0 ” ?! = ? 8 2 T ? 5 ? ?6 Δ89 log max ?6 , log log 5/, log Δ89 /, + ?6 Δ89 log max 5 ? 1 ? 2, 1 + 4, ?6 , log log(5/, log Δ89 /, F5G ?1 ? %! IJK FLL ! − 2 3 ! − 2 ?6 = ?N
  • 38. 4 (FWER, TPR) ! ( ? $ %&”?) %& ‥+ + - 3 9 1 ? 7- ! ( ? ?1 ” ?3 = ? 6 3 T ? 9 ? ?+ Δ;< log log Δ;< /- + ?+ Δ;< log max 9 ? 1 ? E ?+ , log log(9/- log Δ;< /- H9I$ ?3 ” ?+ ?+ − 1 ? -KLM HNN ! − 6 E = (1 ? 3- ? 2- log 1/- / ?+
  • 41. n n