際際滷

際際滷Share a Scribd company logo
KKiinneemmaattiiccss 11DD 
KKiinneemmaattiicc EEqquuaattiioonnss
Equation How Used 
How altered when 
objects start from 
rest, v0 = 0 
How altered when 
v is constant, 
a = 0 
KKiinneemmaattiicc EEqquuaattiioonnss 
1 
2 
v=v0+at 
The kinematic equations can only be used in problems with 
uniform (constant magnitude) acceleration. 
For constant velocity we already have 
v = Dx 
t 
Dx=v0t+ 
at2 
v2=v0 
2+2aDx 
  
Dx= 
1 
2 
at2 
  
v=2aDx 
  
v=at 
  
Dx=v0t 
  
v=v0 
  
v=v0 
Relates 
displacement and 
time 
Relates velocity 
and time 
When time in not 
mentioned
ZZeerrooss,, PPlluusssseess,, aanndd MMiinnuusseess 
These are often the trick to the problem and hidden in the text. 
Zero Positives and Negatives 
x0 Start at origin + Starts right of origin 
 Starts left of origin 
x Ends at origin + Ends right of origin 
 Ends left of origin 
x Returns to starting point + Final position is to the right of initial position 
 Final position is to the left of initial position 
v0 Initially at rest + Moving right 
 Moving left 
v Stops + Moving right 
 Moving left 
息 
a Constant velocity 
+ Moving right (+) and speeding up (+) 
+ Moving left () and slowing down () 
 Moving right (+) and slowing down () 
 Moving left () and speeding up (+) 
t N/A + Always
EExxaammppllee 11 
An object initially at rest is displaced 150 m reaching a 
final speed of 30 m/s. 
a. Determine the objects acceleration. 
Making a variable list is a huge step in the right direction. 
Look for hidden zero quantities, and picture a coordinate axis to assist in 
determining the correct sign of each variable. 
x0 = 0 m Never said where it started: Assume the origin. 
x = Never given, but can be figured out from displacement. 
x = 150 mGiven in the text of the problem. 
v0 = 0 m/s Hidden in the words, initially at rest. 
v = 30 m/s Given in the text of the problem. 
a = ? The unknown. 
t = Never given. 
We can eliminate the first two variables since we already have displacement. 
息
EExxaammppllee 11 
An object initially at rest is displaced 150 m reaching a 
final speed of 30 m/s. 
a. Determine the objects acceleration. 
x = 150 m 
v0 = 0 m/s 
v = 30 m/s 
a = ? 
t = 
Deciding on an equation 
1. Type of motion? 
If you answer constant velocity, use 
If you answer acceleration continue. 
2. Time mentioned? 
If no, use 
If yes continue. 
3. Time and displacement mentioned? 
息 
If yes, use 
4. Time and velocity mentioned? 
If yes, use 
v = Dx 
t 
v2 = v0 
2 + 2aDx 
Dx = v0t + 1 
2 
at2 
v = v0 + at 
Accelerating, 
and time is not 
mentioned. 
v2 = v0 
2 + 2aDx
EExxaammppllee 11 
An object initially at rest is displaced 150 m reaching a 
final speed of 30 m/s. 
a. Determine the objects acceleration. 
2 + 2aDx 
息 
x = 150 m 
v0 = 0 m/s 
v = 30 m/s 
a = ? 
t = 
Solve showing the following work 
1. Write the original equation (or an equivalent). 
v2 = v0 
2. Rearrange to solve for requested variable. 
3. Show substitution of given values. 
4. Solve boxing answer and including correct 
units. 
Accelerating, 
and time is not 
mentioned. 
v2 = v0 
2 + 2aDx 
a = 
v2 - v0 
2 
2Dx 
a = 
(30)2 - (0)2 
2(150) 
a = 3 m s2
EExxaammppllee 11 
An object initially at rest is displaced 150 m reaching a 
final speed of 30 m/s. 
息 
b. Determine the time of the motion. 
x = 150 m 
v0 = 0 m/s 
v = 30 m/s 
a = 
t = 
Acceleration from part (a) can be added to the list. 
1. Im going to choice to easier (non-quadratic) 
formula. 
2. Rearrange to solve for requested variable. 
3. Show substitution of given values. 
4. Solve boxing answer and including correct units. 
  
Now time is 
mentioned, and 
both velocity and 
displacement are 
known. 
t = 
v - v0 
a 
t = 
(30)- (0) 
(3) 
t = 10 s 
Dv=v0+at 
1 
2 
x=v0t+ 
at2 
v=v0+at 
3 m/s2
EExxaammppllee 22 
An object moving at 32.0 m/s decelerates to a stop in a 
distance of 240 m. Determine the objects acceleration. 
息 
x = 240 m 
v= 32.0 m/s 
0 v = 0 m/s 
a = 
t = 
Accelerating, and 
time is not 
mentioned. 
v2 = v2 + 2aDx 
0 
v2 = v0 
2 + 2aDx 
a = 
v2 - v0 
2 
2Dx 
a = 
(0)2 - (32.0)2 
2(240) 
a = -2.13 m s2 
Acceleration has two signs. 
It is a vector, so direction of 
motion influences its sign. 
Since no direction was given 
I assumed the object was 
moving in the +x direction. 
It did not reverse. Direction 
remained positive. 
Acceleration is also a rate. If 
velocity is increasing 
(speeding up) acceleration is 
positive, and if decreasing 
(slowing) it is negative. 
Here the object was 
decelerating in the positive 
direction.  + a = a .
EExxaammppllee 33 
An object moves at a constant 15 cm/s for 1 minute. 
Determine the objects displacement. 
息 
v = Dx 
t 
Dx = 9.0 m 
Ask the first question. 
Type of motion? 
Constant velocity 
Dont waste time with the 
kinematic equations and 
all those variables. 
Its the simple equation 
from the summer 
homework. 
However, watch out for 
conversions !!!!!!!!!!!!! 
Dx = vt 
Dx = (0.15)(60)
An object uniformly accelerates from rest reaching a 
speed v while moving a distance x . Determine its speed 
when it has moved a distance 2x . Answer in terms of v . 
No values, but you can still use a variable list. Simply 
check of any variable mentioned or implied. 
An object uniformly accelerates check off aa 
from rest vv00 == 00 
reaching a speed v check off vv 
while moving a distance x check of xx 
How would final speed change if x is doubled to 2x ? 
Double x in the derived equation and determine the 
multiplier for v that will maintain the equality. 
Doubling x increases the right side by root two. 
Therefore, the left side must also be multiplied by 
root two. 
EExxaammppllee 44 
息 
x = 
v0 = 
v = 
a = 
t = 
Accelerating. 
Time not 
mentioned. 
00 (rreesstt) 
v2 = v0 
2 + 2aDx 
Substitute v0 = 0 , 
and rearrange in 
terms of v . 
(? v)= 2a(2x) 
v = 2ax 2v v = 2ax
TTiimmee iiss kkeeyy 
TThheerree aarree ttwwoo wwaayyss ttoo ssoollvvee ffoorr ttiimmee,, eeaacchh iinnvvoollvviinngg ttwwoo sstteeppss.. 
1st Using the Quadratic Equation 2nd Avoiding the Quadratic Equation 
息 
2 + 2a x - x0 Solve for v : ( ) 
Result: Two velocities (parabolic). 
Positive velocity is +x motion and the 
negative velocity is x motion. Decide 
the direction of the final velocity and 
choose the correct velocity. 
2 + 2a x - x0 ( )= v0 + at 
賊 v0 
2 2 ( ) 
0 0 Time unknown: v = v + 2a x - x 
v = 賊 v0 
Dx = v0t + 1 
Main equation: at2 
2 
t = 
2 - 2a(-Dx) 
a 
-v0 賊 v0 
1 
2 
a 
脱 
竪 巽 
旦 
淡 歎 
t2 + v0 ( )t + (-Dx)= 0 
Quadratic: 
t = 
脱 
- v0 ( )賊 v0 ( )2 - 4 1 
2 
a 
竪 巽 
旦 
淡 歎(-Dx) 
脱 
2 1 
2 
a 
竪 巽 
旦 
淡 歎 
Result: Two times 
Why? Quadratic equations are 
parabolic with 2 x points for every 
y . 
Which time is correct? Choose 
positive nonzero times. However, if 
there are two positives it can be 
tricky to pick. 
0 Substitute into: v = v + at
EExxaammppllee 55 
An object is moving in the +x direction at 25 m/s. At the 
instant it passes through the origin it encounters an 
acceleration of 
3.0 m/s2 directed opposite its motion. The acceleration ceases to 
act when the object is 6.0 m to the left of the origin. Determine 
the elapsed time of the motion. 
First well try solving this using the quadratic method. 
息 
x = 
v0 = 
v = 
a = 
t = 
6.0 m to the left 
Begin by identifying key variables and their correct signs. 
6.0 m 
s 
+25 m/s 
3.0 m/s2 directed opposite 
3.0 m/s2 
? s 
Determine 
the elapsed time 
Dx = v0t + 
1 
2 
at2 
(-6.0)= (25)t + 1 
2 
(-3.0)t2 
-1.5t2 + 25t + 6 = 0 
t = 
-b 賊 b2 - 4ac 
2a 
t = 
-(25)賊 (25)2 - 4(-1.5)(6) 
2(-1.5) 
t = 
-25 賊 625 + 36 
-3 
t = -0.24s or 17s 
Negative time 
makes no sense in 
real life. 
Mathematically it is 
a point on a 
parabola if time 
had run backwards. 
Ignore the negative, 
and choose the 
positive value.
EExxaammppllee 55 
An object is moving in the +x direction at 25 m/s. At the 
instant it passes through the origin it encounters an 
acceleration of 
3.0 m/s2 directed opposite its motion. The acceleration ceases to 
act when the object is 6.0 m to the left of the origin. Determine 
the elapsed time of the motion. 
Now lets try the other two equations, avoiding the quadratic. 
息 
x = 
v0 = 
v = 
a = 
t = 
6.0 m to the left 
6.0 m 
s 
+25 m/s 
3.0 m/s2 directed opposite 
3.0 m/s2 
? s 
Determine 
the elapsed time 
v2 = v0 
2 + 2aDx 
2 + 2aDx 
v = 賊 v0 
The quadratic is technically 
superior, but this method 
has major advantages. 
1.Same amount of work. 
2.Velocity is calculated. 
3.Choosing the correct sign 
on velocity is just a matter 
of direction. 
4.Students mess up the 
quadratic 99% of the time. 
Its harder to get all the 
signs correct in the 
quadratic. 
v = 賊 (25)2 + 2(-3.0)(-6.0) 
v = 25.7m/s or - 25.7m/s 
If the object is to the left of 
the origin it must be moving 
left. Choose the negative 
velocity. 
v = v0 + at 
t = 
v - v0 
a 
t = 
(-25.7)- (25) 
(-3.0) 
t = 17 s
OOfftteenn MMuullttiippllee EEqquuaattiioonnss AArree NNeeeeddeedd 
OOccccaassiioonnaallllyy yyoouu mmaayy cchhoooossee aann eeqquuaattiioonn tthhaatt sseeeemmss oobbvviioouuss,, 
bbuutt tthheenn rreeaalliizzee tthhaatt yyoouu aarree mmiissssiinngg iimmppoorrttaanntt vvaarriiaabblleess.. 
EExxaammppllee:: GGiivveenn vveelloocciittyy ddaattaa yyoouu aarree aasskkeedd ttoo ssoollvvee ffoorr ttiimmee.. 
YYoouu cchhoossee aann eeqquuaattiioonn ccoonnttaaiinniinngg tthheessee vvaarriiaabblleess.. 
HHoowweevveerr,, yyoouu rreeaalliizzee tthhaatt yyoouu aarree mmiissssiinngg aacccceelleerraattiioonn.. 
DDoo nnoott ggiivvee uupp.. TThheerree hhaass ttoo bbee aannootthheerr wwaayy.. 
TTuurrnn oouutt tthhaatt yyoouu ccaann ssoollvvee:: 
BBuutt,, hhooww ddooeess tthhiiss hheellpp?? 
IItt ssoollvveess ffoorr tthhee vvaarriiaabbllee tthhaatt wwaass mmiissssiinngg iinn yyoouurr oorriiggiinnaall eeqquuaattiioonn,, aanndd 
nnooww yyoouu aarree aabbllee ttoo ssoollvvee ffoorr ttiimmee uussiinngg:: 
TThhee ppaatthh ttoo tthhee ffiinnaall aannsswweerr iiss nnoott aallwwaayyss oobbvviioouuss,, oorr ddoonnee iinn oonnee sstteepp.. 
SSoollvvee wwhhaatt yyoouu ccaann ssoollvvee,, aanndd kkeeeepp ggooiinngg.. TThhee aannsswweerr wwiillll 
eevveennttuuaallllyy ttuurrnn uupp.. 
息 
v = v0 + at 
v2 = v0 
2 + 2aDx 
v = v0 + at
MMuullttii--SSttaaggee PPrroobblleemmss 
SSoommee pprroobblleemmss aarree aaccttuuaallllyy sseevveerraall ddiiffffeerreenntt pprroobblleemmss iinn oonnee.. 
HHooww aarree tthheessee iiddeennttiiffiieedd?? 
IIff aacccceelleerraattiioonn cchhaannggeess,, tthheenn iitt iiss aa nneeww aanndd sseeppaarraattee pprroobblleemm.. 
EEaacchh aacccceelleerraattiioonn hhaass iittss oowwnn vvaarriiaabbllee lliisstt aanndd eeqquuaattiioonn.. 
SSoollvvee eeaacchh ppaarrtt sseeppaarraatteellyy,, bbuutt kkeeeepp tthhee ffoolllloowwiinngg iinn mmiinndd:: 
TThhee eennddiinngg vveelloocciittyy ffoorr oonnee ppaarrtt iiss tthhee iinniittiiaall vveelloocciittyy ffoorr tthhee ppaarrtt tthhaatt 
ffoolllloowwss.. 
IIff aasskkeedd ffoorr tthhee ttoottaall ddiissppllaacceemmeenntt,, tthheenn ssoollvvee ffoorr tthhee ddiissppllaacceemmeenntt iinn eeaacchh 
pphhaassee sseeppaarraatteellyy aanndd aadddd tthheemm ttooggeetthheerr.. 
IIff aasskkeedd ffoorr tthhee ttoottaall ttiimmee,, tthheenn ssoollvvee ffoorr tthhee ttiimmee iinn eeaacchh pphhaassee sseeppaarraatteellyy 
aanndd aadddd tthheemm ttooggeetthheerr.. 
息
EExxaammppllee 66 
This problem has three distinct parts, with three different accelerations 
constant velocity 
slows to a stop 
800 m 180 m 
息 
Finally the car slows 
to a stop in a distance of 180 m. 
x = 
v0 = 
v = 
a = 
t = 
x = 
v0 = 
v = 
a = 
t = 
 2.4 m/s2  
x = 
v0 = 
v = 
a = 
t = 
A car is at rest at a traffic signal. When the light turns green 
the car accelerates at 2.4 m/s2 for 15 s. 
0 m/s 
2.4 m/s2 
Then the driver 
maintains a constant velocity for 0.80 km. 
0 m/s2 
15 s 
? m/s2 
What other variables can be discerned from the problem above? 
Are there any important facts we should keep in mind? 
0 m/s 
The final velocity of one phase becomes the initial velocity for the next. 
Constant velocity means that initial and final velocities are equal.
A car is at rest at a traffic signal. When the light turns green 
the car accelerates at 2.4 m/s2 for 15 s. Then the driver 
maintains a constant velocity for 0.80 km. Finally the car slows 
to a stop in a distance of 180 m. 
800 m 180 m 
? m/s2 
EExxaammppllee 66 
3.6 m/s2 
x = 
v0 = 
v = 
a = 
t = 
22 s 10 s 
Constant Velocity 
Equation 
息 
0 m/s 
36 m/s 
v = v0 + at 
v = (0)+ (2.4)(15) 
v = 36m s 
36 m/s 
36 m/s 
36 m/s 
Dx = v0t + 1 
2 
at2 
Dx = (0)(15)+ 1 
2 
(2.4)(15)2 
Dx = 270m 
270 m 
v = 
Dx 
t 
(36)= 
(800) 
t 
t = 22m s 
v2 = v0 
2 + 2aDx 
(0)2 = (36)2 + 2a(180) 
a = -3.6m s2 
v = v0 + at 
(0)= (36)+ (-3.6)t 
t = 10s 
x = 
v0 = 
v = 
a = 
t = 
x = 
v0 = 
v = 
a = 
t = 
2.4 m/s2 0 m/s2 
15 s 
0 m/s
A car is at rest at a traffic signal. When the light turns green 
the car accelerates at 2.4 m/s2 for 15 s. Then the driver 
maintains a constant velocity for 0.80 km. Finally the car slows 
to a stop in a distance of 180 m. 
800 m 180 m 
? m/s2 
EExxaammppllee 66 
ttotal = t1 + t2 + t3 = (15)+ (22)+ (10)= 47 s 
息 
0 m/s 
36 m/s 
36 m/s 
36 m/s 
36 m/s 
270 m 
3.6 m/s2 
x = 
v0 = 
v = 
a = 
t = 
22 s 10 s 
x = 
v0 = 
v = 
a = 
t = 
x = 
v0 = 
v = 
a = 
t = 
2.4 m/s2 0 m/s2 
15 s 
0 m/s 
To find the total time sum the times of all three phases. 
To find the total displacement sum the displacements of all three phases. 
Dxtotal = Dx1 + Dx2 + Dx3 = (270)+ (800)+ (180)= 1250m
DDeerriivviinngg tthhee KKiinneemmaattiicc EEqquuaattiioonnss 
AAcccceelleerraattiioonn ccoommpplliiccaatteess mmoottiioonn pprroobblleemmss.. 
GGaalliilleeoo ddiisscceerrnneedd tthhee mmoosstt iimmppoorrttaanntt kkiinneemmaattiicc eeqquuaattiioonn ffrroomm aann 
eexxppeerriimmeenntt iinnvvoollvviinngg rroolllliinngg aa bbaallll ddoowwnn aann iinncclliinnee.. HHee uunnddeerrssttoooodd 
tthhee rreellaattiioonnsshhiippss bbeettwweeeenn tthhee vvaarriiaabblleess iinn tthhee 11550000ss.. CCaallccuulluuss hhaadd 
nnoott yyeett bbeeeenn iinnvveenntteedd aanndd aallggeebbrraaiicc eeqquuaattiioonnss wweerree oorriiggiinnaallllyy 
ddeetteerrmmiinneedd bbyy eexxppeerriimmeennttaattiioonn.. 
FFrroomm tthhee ootthheerr eeqquuaattiioonnss ccaann bbee ddeerriivveedd.. 
YYoouu wwiillll nnoott bbee rreessppoonnssiibbllee ffoorr tthheessee ddeerriivvaattiioonnss ((oonnee ooff tthheemm uusseess 
CCaallccuulluuss)),, bbuutt iitt iiss iinntteerreessttiinngg ttoo sseeee hhooww tthheeyy aallll rreellaattee ttoo oonnee 
aannootthheerr aanndd ssuuppppoorrtt oonnee aannootthheerr.. 
息 
Dx = v0t + 1 
2 
at2
DDeerriivviinngg tthhee KKiinneemmaattiicc EEqquuaattiioonnss 
at2 脱 
息 
Dx = v0t + 1 
2 
at2 
x = x0 + v0t + 1 
2 
at2 
Dx = v0t + 1 
2 
at2 
Constant Velocity 
a = 0 
Dx = v0t + 1 
2 
(0)t2 
Dx = v0t 
Constant Velocity 
v = v0 
Dx = vt 
v = 
Dx 
t 
Velocity is the 
derivative of position 
with respect to time. 
Need to use position, 
not displacement. 
v = dx 
dt 
v = 
d x0 + v0t + 1 
2 
竪 巽 
旦 
淡 歎 
dt 
v = v0 + at 
Combine with 
v = v0 + at 
rearranged as 
t = 
v - v0 
a 
Dx = v0 
v - v0 
a 
脱 
竪 巽 
旦 
淡 歎 
+ 1 
2 
a 
v - v0 
a 
脱 
竪 巽 
旦 
淡 歎 
2 
v2 = v0 
2 + 2aDx

More Related Content

Kinematic equations of motion

  • 2. Equation How Used How altered when objects start from rest, v0 = 0 How altered when v is constant, a = 0 KKiinneemmaattiicc EEqquuaattiioonnss 1 2 v=v0+at The kinematic equations can only be used in problems with uniform (constant magnitude) acceleration. For constant velocity we already have v = Dx t Dx=v0t+ at2 v2=v0 2+2aDx Dx= 1 2 at2 v=2aDx v=at Dx=v0t v=v0 v=v0 Relates displacement and time Relates velocity and time When time in not mentioned
  • 3. ZZeerrooss,, PPlluusssseess,, aanndd MMiinnuusseess These are often the trick to the problem and hidden in the text. Zero Positives and Negatives x0 Start at origin + Starts right of origin Starts left of origin x Ends at origin + Ends right of origin Ends left of origin x Returns to starting point + Final position is to the right of initial position Final position is to the left of initial position v0 Initially at rest + Moving right Moving left v Stops + Moving right Moving left 息 a Constant velocity + Moving right (+) and speeding up (+) + Moving left () and slowing down () Moving right (+) and slowing down () Moving left () and speeding up (+) t N/A + Always
  • 4. EExxaammppllee 11 An object initially at rest is displaced 150 m reaching a final speed of 30 m/s. a. Determine the objects acceleration. Making a variable list is a huge step in the right direction. Look for hidden zero quantities, and picture a coordinate axis to assist in determining the correct sign of each variable. x0 = 0 m Never said where it started: Assume the origin. x = Never given, but can be figured out from displacement. x = 150 mGiven in the text of the problem. v0 = 0 m/s Hidden in the words, initially at rest. v = 30 m/s Given in the text of the problem. a = ? The unknown. t = Never given. We can eliminate the first two variables since we already have displacement. 息
  • 5. EExxaammppllee 11 An object initially at rest is displaced 150 m reaching a final speed of 30 m/s. a. Determine the objects acceleration. x = 150 m v0 = 0 m/s v = 30 m/s a = ? t = Deciding on an equation 1. Type of motion? If you answer constant velocity, use If you answer acceleration continue. 2. Time mentioned? If no, use If yes continue. 3. Time and displacement mentioned? 息 If yes, use 4. Time and velocity mentioned? If yes, use v = Dx t v2 = v0 2 + 2aDx Dx = v0t + 1 2 at2 v = v0 + at Accelerating, and time is not mentioned. v2 = v0 2 + 2aDx
  • 6. EExxaammppllee 11 An object initially at rest is displaced 150 m reaching a final speed of 30 m/s. a. Determine the objects acceleration. 2 + 2aDx 息 x = 150 m v0 = 0 m/s v = 30 m/s a = ? t = Solve showing the following work 1. Write the original equation (or an equivalent). v2 = v0 2. Rearrange to solve for requested variable. 3. Show substitution of given values. 4. Solve boxing answer and including correct units. Accelerating, and time is not mentioned. v2 = v0 2 + 2aDx a = v2 - v0 2 2Dx a = (30)2 - (0)2 2(150) a = 3 m s2
  • 7. EExxaammppllee 11 An object initially at rest is displaced 150 m reaching a final speed of 30 m/s. 息 b. Determine the time of the motion. x = 150 m v0 = 0 m/s v = 30 m/s a = t = Acceleration from part (a) can be added to the list. 1. Im going to choice to easier (non-quadratic) formula. 2. Rearrange to solve for requested variable. 3. Show substitution of given values. 4. Solve boxing answer and including correct units. Now time is mentioned, and both velocity and displacement are known. t = v - v0 a t = (30)- (0) (3) t = 10 s Dv=v0+at 1 2 x=v0t+ at2 v=v0+at 3 m/s2
  • 8. EExxaammppllee 22 An object moving at 32.0 m/s decelerates to a stop in a distance of 240 m. Determine the objects acceleration. 息 x = 240 m v= 32.0 m/s 0 v = 0 m/s a = t = Accelerating, and time is not mentioned. v2 = v2 + 2aDx 0 v2 = v0 2 + 2aDx a = v2 - v0 2 2Dx a = (0)2 - (32.0)2 2(240) a = -2.13 m s2 Acceleration has two signs. It is a vector, so direction of motion influences its sign. Since no direction was given I assumed the object was moving in the +x direction. It did not reverse. Direction remained positive. Acceleration is also a rate. If velocity is increasing (speeding up) acceleration is positive, and if decreasing (slowing) it is negative. Here the object was decelerating in the positive direction. + a = a .
  • 9. EExxaammppllee 33 An object moves at a constant 15 cm/s for 1 minute. Determine the objects displacement. 息 v = Dx t Dx = 9.0 m Ask the first question. Type of motion? Constant velocity Dont waste time with the kinematic equations and all those variables. Its the simple equation from the summer homework. However, watch out for conversions !!!!!!!!!!!!! Dx = vt Dx = (0.15)(60)
  • 10. An object uniformly accelerates from rest reaching a speed v while moving a distance x . Determine its speed when it has moved a distance 2x . Answer in terms of v . No values, but you can still use a variable list. Simply check of any variable mentioned or implied. An object uniformly accelerates check off aa from rest vv00 == 00 reaching a speed v check off vv while moving a distance x check of xx How would final speed change if x is doubled to 2x ? Double x in the derived equation and determine the multiplier for v that will maintain the equality. Doubling x increases the right side by root two. Therefore, the left side must also be multiplied by root two. EExxaammppllee 44 息 x = v0 = v = a = t = Accelerating. Time not mentioned. 00 (rreesstt) v2 = v0 2 + 2aDx Substitute v0 = 0 , and rearrange in terms of v . (? v)= 2a(2x) v = 2ax 2v v = 2ax
  • 11. TTiimmee iiss kkeeyy TThheerree aarree ttwwoo wwaayyss ttoo ssoollvvee ffoorr ttiimmee,, eeaacchh iinnvvoollvviinngg ttwwoo sstteeppss.. 1st Using the Quadratic Equation 2nd Avoiding the Quadratic Equation 息 2 + 2a x - x0 Solve for v : ( ) Result: Two velocities (parabolic). Positive velocity is +x motion and the negative velocity is x motion. Decide the direction of the final velocity and choose the correct velocity. 2 + 2a x - x0 ( )= v0 + at 賊 v0 2 2 ( ) 0 0 Time unknown: v = v + 2a x - x v = 賊 v0 Dx = v0t + 1 Main equation: at2 2 t = 2 - 2a(-Dx) a -v0 賊 v0 1 2 a 脱 竪 巽 旦 淡 歎 t2 + v0 ( )t + (-Dx)= 0 Quadratic: t = 脱 - v0 ( )賊 v0 ( )2 - 4 1 2 a 竪 巽 旦 淡 歎(-Dx) 脱 2 1 2 a 竪 巽 旦 淡 歎 Result: Two times Why? Quadratic equations are parabolic with 2 x points for every y . Which time is correct? Choose positive nonzero times. However, if there are two positives it can be tricky to pick. 0 Substitute into: v = v + at
  • 12. EExxaammppllee 55 An object is moving in the +x direction at 25 m/s. At the instant it passes through the origin it encounters an acceleration of 3.0 m/s2 directed opposite its motion. The acceleration ceases to act when the object is 6.0 m to the left of the origin. Determine the elapsed time of the motion. First well try solving this using the quadratic method. 息 x = v0 = v = a = t = 6.0 m to the left Begin by identifying key variables and their correct signs. 6.0 m s +25 m/s 3.0 m/s2 directed opposite 3.0 m/s2 ? s Determine the elapsed time Dx = v0t + 1 2 at2 (-6.0)= (25)t + 1 2 (-3.0)t2 -1.5t2 + 25t + 6 = 0 t = -b 賊 b2 - 4ac 2a t = -(25)賊 (25)2 - 4(-1.5)(6) 2(-1.5) t = -25 賊 625 + 36 -3 t = -0.24s or 17s Negative time makes no sense in real life. Mathematically it is a point on a parabola if time had run backwards. Ignore the negative, and choose the positive value.
  • 13. EExxaammppllee 55 An object is moving in the +x direction at 25 m/s. At the instant it passes through the origin it encounters an acceleration of 3.0 m/s2 directed opposite its motion. The acceleration ceases to act when the object is 6.0 m to the left of the origin. Determine the elapsed time of the motion. Now lets try the other two equations, avoiding the quadratic. 息 x = v0 = v = a = t = 6.0 m to the left 6.0 m s +25 m/s 3.0 m/s2 directed opposite 3.0 m/s2 ? s Determine the elapsed time v2 = v0 2 + 2aDx 2 + 2aDx v = 賊 v0 The quadratic is technically superior, but this method has major advantages. 1.Same amount of work. 2.Velocity is calculated. 3.Choosing the correct sign on velocity is just a matter of direction. 4.Students mess up the quadratic 99% of the time. Its harder to get all the signs correct in the quadratic. v = 賊 (25)2 + 2(-3.0)(-6.0) v = 25.7m/s or - 25.7m/s If the object is to the left of the origin it must be moving left. Choose the negative velocity. v = v0 + at t = v - v0 a t = (-25.7)- (25) (-3.0) t = 17 s
  • 14. OOfftteenn MMuullttiippllee EEqquuaattiioonnss AArree NNeeeeddeedd OOccccaassiioonnaallllyy yyoouu mmaayy cchhoooossee aann eeqquuaattiioonn tthhaatt sseeeemmss oobbvviioouuss,, bbuutt tthheenn rreeaalliizzee tthhaatt yyoouu aarree mmiissssiinngg iimmppoorrttaanntt vvaarriiaabblleess.. EExxaammppllee:: GGiivveenn vveelloocciittyy ddaattaa yyoouu aarree aasskkeedd ttoo ssoollvvee ffoorr ttiimmee.. YYoouu cchhoossee aann eeqquuaattiioonn ccoonnttaaiinniinngg tthheessee vvaarriiaabblleess.. HHoowweevveerr,, yyoouu rreeaalliizzee tthhaatt yyoouu aarree mmiissssiinngg aacccceelleerraattiioonn.. DDoo nnoott ggiivvee uupp.. TThheerree hhaass ttoo bbee aannootthheerr wwaayy.. TTuurrnn oouutt tthhaatt yyoouu ccaann ssoollvvee:: BBuutt,, hhooww ddooeess tthhiiss hheellpp?? IItt ssoollvveess ffoorr tthhee vvaarriiaabbllee tthhaatt wwaass mmiissssiinngg iinn yyoouurr oorriiggiinnaall eeqquuaattiioonn,, aanndd nnooww yyoouu aarree aabbllee ttoo ssoollvvee ffoorr ttiimmee uussiinngg:: TThhee ppaatthh ttoo tthhee ffiinnaall aannsswweerr iiss nnoott aallwwaayyss oobbvviioouuss,, oorr ddoonnee iinn oonnee sstteepp.. SSoollvvee wwhhaatt yyoouu ccaann ssoollvvee,, aanndd kkeeeepp ggooiinngg.. TThhee aannsswweerr wwiillll eevveennttuuaallllyy ttuurrnn uupp.. 息 v = v0 + at v2 = v0 2 + 2aDx v = v0 + at
  • 15. MMuullttii--SSttaaggee PPrroobblleemmss SSoommee pprroobblleemmss aarree aaccttuuaallllyy sseevveerraall ddiiffffeerreenntt pprroobblleemmss iinn oonnee.. HHooww aarree tthheessee iiddeennttiiffiieedd?? IIff aacccceelleerraattiioonn cchhaannggeess,, tthheenn iitt iiss aa nneeww aanndd sseeppaarraattee pprroobblleemm.. EEaacchh aacccceelleerraattiioonn hhaass iittss oowwnn vvaarriiaabbllee lliisstt aanndd eeqquuaattiioonn.. SSoollvvee eeaacchh ppaarrtt sseeppaarraatteellyy,, bbuutt kkeeeepp tthhee ffoolllloowwiinngg iinn mmiinndd:: TThhee eennddiinngg vveelloocciittyy ffoorr oonnee ppaarrtt iiss tthhee iinniittiiaall vveelloocciittyy ffoorr tthhee ppaarrtt tthhaatt ffoolllloowwss.. IIff aasskkeedd ffoorr tthhee ttoottaall ddiissppllaacceemmeenntt,, tthheenn ssoollvvee ffoorr tthhee ddiissppllaacceemmeenntt iinn eeaacchh pphhaassee sseeppaarraatteellyy aanndd aadddd tthheemm ttooggeetthheerr.. IIff aasskkeedd ffoorr tthhee ttoottaall ttiimmee,, tthheenn ssoollvvee ffoorr tthhee ttiimmee iinn eeaacchh pphhaassee sseeppaarraatteellyy aanndd aadddd tthheemm ttooggeetthheerr.. 息
  • 16. EExxaammppllee 66 This problem has three distinct parts, with three different accelerations constant velocity slows to a stop 800 m 180 m 息 Finally the car slows to a stop in a distance of 180 m. x = v0 = v = a = t = x = v0 = v = a = t = 2.4 m/s2 x = v0 = v = a = t = A car is at rest at a traffic signal. When the light turns green the car accelerates at 2.4 m/s2 for 15 s. 0 m/s 2.4 m/s2 Then the driver maintains a constant velocity for 0.80 km. 0 m/s2 15 s ? m/s2 What other variables can be discerned from the problem above? Are there any important facts we should keep in mind? 0 m/s The final velocity of one phase becomes the initial velocity for the next. Constant velocity means that initial and final velocities are equal.
  • 17. A car is at rest at a traffic signal. When the light turns green the car accelerates at 2.4 m/s2 for 15 s. Then the driver maintains a constant velocity for 0.80 km. Finally the car slows to a stop in a distance of 180 m. 800 m 180 m ? m/s2 EExxaammppllee 66 3.6 m/s2 x = v0 = v = a = t = 22 s 10 s Constant Velocity Equation 息 0 m/s 36 m/s v = v0 + at v = (0)+ (2.4)(15) v = 36m s 36 m/s 36 m/s 36 m/s Dx = v0t + 1 2 at2 Dx = (0)(15)+ 1 2 (2.4)(15)2 Dx = 270m 270 m v = Dx t (36)= (800) t t = 22m s v2 = v0 2 + 2aDx (0)2 = (36)2 + 2a(180) a = -3.6m s2 v = v0 + at (0)= (36)+ (-3.6)t t = 10s x = v0 = v = a = t = x = v0 = v = a = t = 2.4 m/s2 0 m/s2 15 s 0 m/s
  • 18. A car is at rest at a traffic signal. When the light turns green the car accelerates at 2.4 m/s2 for 15 s. Then the driver maintains a constant velocity for 0.80 km. Finally the car slows to a stop in a distance of 180 m. 800 m 180 m ? m/s2 EExxaammppllee 66 ttotal = t1 + t2 + t3 = (15)+ (22)+ (10)= 47 s 息 0 m/s 36 m/s 36 m/s 36 m/s 36 m/s 270 m 3.6 m/s2 x = v0 = v = a = t = 22 s 10 s x = v0 = v = a = t = x = v0 = v = a = t = 2.4 m/s2 0 m/s2 15 s 0 m/s To find the total time sum the times of all three phases. To find the total displacement sum the displacements of all three phases. Dxtotal = Dx1 + Dx2 + Dx3 = (270)+ (800)+ (180)= 1250m
  • 19. DDeerriivviinngg tthhee KKiinneemmaattiicc EEqquuaattiioonnss AAcccceelleerraattiioonn ccoommpplliiccaatteess mmoottiioonn pprroobblleemmss.. GGaalliilleeoo ddiisscceerrnneedd tthhee mmoosstt iimmppoorrttaanntt kkiinneemmaattiicc eeqquuaattiioonn ffrroomm aann eexxppeerriimmeenntt iinnvvoollvviinngg rroolllliinngg aa bbaallll ddoowwnn aann iinncclliinnee.. HHee uunnddeerrssttoooodd tthhee rreellaattiioonnsshhiippss bbeettwweeeenn tthhee vvaarriiaabblleess iinn tthhee 11550000ss.. CCaallccuulluuss hhaadd nnoott yyeett bbeeeenn iinnvveenntteedd aanndd aallggeebbrraaiicc eeqquuaattiioonnss wweerree oorriiggiinnaallllyy ddeetteerrmmiinneedd bbyy eexxppeerriimmeennttaattiioonn.. FFrroomm tthhee ootthheerr eeqquuaattiioonnss ccaann bbee ddeerriivveedd.. YYoouu wwiillll nnoott bbee rreessppoonnssiibbllee ffoorr tthheessee ddeerriivvaattiioonnss ((oonnee ooff tthheemm uusseess CCaallccuulluuss)),, bbuutt iitt iiss iinntteerreessttiinngg ttoo sseeee hhooww tthheeyy aallll rreellaattee ttoo oonnee aannootthheerr aanndd ssuuppppoorrtt oonnee aannootthheerr.. 息 Dx = v0t + 1 2 at2
  • 20. DDeerriivviinngg tthhee KKiinneemmaattiicc EEqquuaattiioonnss at2 脱 息 Dx = v0t + 1 2 at2 x = x0 + v0t + 1 2 at2 Dx = v0t + 1 2 at2 Constant Velocity a = 0 Dx = v0t + 1 2 (0)t2 Dx = v0t Constant Velocity v = v0 Dx = vt v = Dx t Velocity is the derivative of position with respect to time. Need to use position, not displacement. v = dx dt v = d x0 + v0t + 1 2 竪 巽 旦 淡 歎 dt v = v0 + at Combine with v = v0 + at rearranged as t = v - v0 a Dx = v0 v - v0 a 脱 竪 巽 旦 淡 歎 + 1 2 a v - v0 a 脱 竪 巽 旦 淡 歎 2 v2 = v0 2 + 2aDx