際際滷

際際滷Share a Scribd company logo
TUGAS AKHIR LOGIKA INFORMATIKA Nama : Andri sujarwo Nim : 0802107
Penyederhanaan Fungsi Boolean dengan menggunakan Peta Karnaugh Dalam Bentuk SOP (sum of product) / minterm . Dengan tugas akhir memberikan bentuk cara kerja dari penyederhanaan fungsi boolean dengan menggunakan peta karnaugh. Dengan bentuk kerja berupa pengambilan output dari aplikasi Winloginlab yang telah di edit. Dimana penyederhanaan ini di lengkapi juga dengan  struktur gerbang alur penyederhanaan.
Berikut ini contoh soal yang akan di sederhananakan dengan Peta  Karnaugh dalam bentuk SOP(Sum Of Product)/Minterm  => Z(D,C,B,A)= ‘m(0,1,2,4,5,7,8,10,13,14,15) Di sebelah kiri merupakan bentuk fungsi yang digambarkan dalam tabel
Pada slide ini fungsi boolean tadi di masukan ke dalam peta karnaugh sesuai dengan alamat dari tabel.  Keterangan: D,C,BA = variabel   fungsi (-) Diatas variabel =  komplenamen  variabel bernilai (0) Alamat tempat pada peta karnaugh dapat dari Agar kita dapat menemukan minterm nya,kita harus tahu bahwa  minterm mencari nilai yang = (1)
tidak ada 16 nilai-nilai logika yang tinggi.
Tidak ada satu blok pun dari 8 logika, yang dapat dihubungkan.
Ter dapat satu buah block dari 4  nilai-nilai logika yang di hubungkan pada lokasi ini. Sisi baris Puncak baris Nilai yang tidak diberubah Di tulis dengan fungsi  z  dan sesuai dengan bentuk minterm(sop) Untuk menyederhanakan dari gabungan variabel logika kita harus melihat variabel mana yang mempunyai nilai yang sama, apabila suatu variabel logika memiliki nilai yang sama maka ambil salah satunya ,dan apabila variabel itu memiliki nilai yang berbeda maka kita tidak perlu mengabil variabel tersebut sebagai penyederhanaannya.   Sisi baris Puncak baris Nilai yang tidak diberubah Gabungan variabel logika
Untuk menyederhanakan dari gabungan variabel logika kita harus melihat variabel mana yang mempunyai nilai yang sama, apabila suatu variabel logika memiliki nilai yang sama maka ambil salah satunya ,dan apabila variabel itu memiliki nilai yang berbeda maka kita tidak perlu mengabil variabel tersebut sebagai penyederhanaannya.   Pada slide ini di temukan lagi block dari 4  nilai-nilai logika yang di hubungkan pada lokasi ini. Karna peta karnaugh bersifat  seperti bola jadi setiap sisi sudut nya saling berhubungan  Di tulis dengan fungsi  z  dan sesuai dengan bentuk minterm(sop) Sisi baris Puncak baris Nilai yang tidak diberubah Gabungan variabel logika
Sisi baris Puncak baris Nilai yang tidak diberubah Di tulis dengan fungsi  z  dan sesuai dengan bentuk minterm(sop) Untuk menyederhanakan dari gabungan variabel logika kita harus melihat variabel mana yang mempunyai nilai yang sama, apabila suatu variabel logika memiliki nilai yang sama maka ambil salah satunya ,dan apabila variabel itu memiliki nilai yang berbeda maka kita tidak perlu mengabil variabel tersebut sebagai penyederhanaannya.   Gabungan variabel logika Nilai yang tidak diberubah Gabungan variabel logika Pada slide ini di temukan lagi block dari 4  nilai-nilai logika yang di hubungkan pada lokasi ini.
Sisi baris Puncak baris Nilai yang tidak diberubah Di tulis dengan fungsi  z  dan sesuai dengan bentuk minterm(sop) Untuk menyederhanakan dari gabungan variabel logika kita harus melihat variabel mana yang mempunyai nilai yang sama, apabila suatu variabel logika memiliki nilai yang sama maka ambil salah satunya ,dan apabila variabel itu memiliki nilai yang berbeda maka kita tidak perlu mengabil variabel tersebut sebagai penyederhanaannya.   Gabungan variabel logika Nilai yang tidak diberubah Gabungan variabel logika Pada slide ini di temukan blok dari 2 nilai-nilai logika yang di hubungkan pada lokasi ini. Pada blok yang terdiri dari 2 nilai logika,mempunyai sifat salah satu nya terletak pada sisi atau puncak baris yang sama, oleh karna itu sisi atau puncak baris yang sama itu merupakan variabel penyederhananaannya.
Tidak ada lagi nilai- nilai logika yang dapat di hubungkan berati fungsi  z  ini, merupakan bentuk penyederhanaannya. Dengan demikian pengerjaan penyederhanaan dengan peta karnaugh telah berakhir. Langkah berikut nya mengambarkan bentuk penyederhanaan kedalam bentuk gerbang alur logika.
Dari penyederhanaan fungsi  z  tadi, dapat digambarkanlah Gerbang alur logikanya.  Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
Dari penyederhanaan fungsi  z  tadi, dapat digambarkanlah Gerbang alur logikanya.  Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
Dari penyederhanaan fungsi  z  tadi, dapat digambarkanlah Gerbang alur logikanya.  Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
Dari penyederhanaan fungsi  z  tadi, dapat digambarkanlah Gerbang alur logikanya.  Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
Dari penyederhanaan fungsi  z  tadi, dapat digambarkanlah Gerbang alur logikanya.  Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
Dari pembuatan gerbang alur logika tadi, di peroleh hasil akhir  Sebagai berikut: Catatan : Dalam membuat gerbang alur diperlukan ketelitian dalam menaruh letak garis sesuai dengan variabel yang yang akan dibuat. Setiap gerbang mewakili dari logika yang akan dibuat oleh karna itu pemberian gerbang harslah sesuai dengan bentuk logika nya.
?

More Related Content

KMap

  • 1. TUGAS AKHIR LOGIKA INFORMATIKA Nama : Andri sujarwo Nim : 0802107
  • 2. Penyederhanaan Fungsi Boolean dengan menggunakan Peta Karnaugh Dalam Bentuk SOP (sum of product) / minterm . Dengan tugas akhir memberikan bentuk cara kerja dari penyederhanaan fungsi boolean dengan menggunakan peta karnaugh. Dengan bentuk kerja berupa pengambilan output dari aplikasi Winloginlab yang telah di edit. Dimana penyederhanaan ini di lengkapi juga dengan struktur gerbang alur penyederhanaan.
  • 3. Berikut ini contoh soal yang akan di sederhananakan dengan Peta Karnaugh dalam bentuk SOP(Sum Of Product)/Minterm => Z(D,C,B,A)= ‘m(0,1,2,4,5,7,8,10,13,14,15) Di sebelah kiri merupakan bentuk fungsi yang digambarkan dalam tabel
  • 4. Pada slide ini fungsi boolean tadi di masukan ke dalam peta karnaugh sesuai dengan alamat dari tabel. Keterangan: D,C,BA = variabel fungsi (-) Diatas variabel = komplenamen variabel bernilai (0) Alamat tempat pada peta karnaugh dapat dari Agar kita dapat menemukan minterm nya,kita harus tahu bahwa minterm mencari nilai yang = (1)
  • 5. tidak ada 16 nilai-nilai logika yang tinggi.
  • 6. Tidak ada satu blok pun dari 8 logika, yang dapat dihubungkan.
  • 7. Ter dapat satu buah block dari 4 nilai-nilai logika yang di hubungkan pada lokasi ini. Sisi baris Puncak baris Nilai yang tidak diberubah Di tulis dengan fungsi z dan sesuai dengan bentuk minterm(sop) Untuk menyederhanakan dari gabungan variabel logika kita harus melihat variabel mana yang mempunyai nilai yang sama, apabila suatu variabel logika memiliki nilai yang sama maka ambil salah satunya ,dan apabila variabel itu memiliki nilai yang berbeda maka kita tidak perlu mengabil variabel tersebut sebagai penyederhanaannya. Sisi baris Puncak baris Nilai yang tidak diberubah Gabungan variabel logika
  • 8. Untuk menyederhanakan dari gabungan variabel logika kita harus melihat variabel mana yang mempunyai nilai yang sama, apabila suatu variabel logika memiliki nilai yang sama maka ambil salah satunya ,dan apabila variabel itu memiliki nilai yang berbeda maka kita tidak perlu mengabil variabel tersebut sebagai penyederhanaannya. Pada slide ini di temukan lagi block dari 4 nilai-nilai logika yang di hubungkan pada lokasi ini. Karna peta karnaugh bersifat seperti bola jadi setiap sisi sudut nya saling berhubungan Di tulis dengan fungsi z dan sesuai dengan bentuk minterm(sop) Sisi baris Puncak baris Nilai yang tidak diberubah Gabungan variabel logika
  • 9. Sisi baris Puncak baris Nilai yang tidak diberubah Di tulis dengan fungsi z dan sesuai dengan bentuk minterm(sop) Untuk menyederhanakan dari gabungan variabel logika kita harus melihat variabel mana yang mempunyai nilai yang sama, apabila suatu variabel logika memiliki nilai yang sama maka ambil salah satunya ,dan apabila variabel itu memiliki nilai yang berbeda maka kita tidak perlu mengabil variabel tersebut sebagai penyederhanaannya. Gabungan variabel logika Nilai yang tidak diberubah Gabungan variabel logika Pada slide ini di temukan lagi block dari 4 nilai-nilai logika yang di hubungkan pada lokasi ini.
  • 10. Sisi baris Puncak baris Nilai yang tidak diberubah Di tulis dengan fungsi z dan sesuai dengan bentuk minterm(sop) Untuk menyederhanakan dari gabungan variabel logika kita harus melihat variabel mana yang mempunyai nilai yang sama, apabila suatu variabel logika memiliki nilai yang sama maka ambil salah satunya ,dan apabila variabel itu memiliki nilai yang berbeda maka kita tidak perlu mengabil variabel tersebut sebagai penyederhanaannya. Gabungan variabel logika Nilai yang tidak diberubah Gabungan variabel logika Pada slide ini di temukan blok dari 2 nilai-nilai logika yang di hubungkan pada lokasi ini. Pada blok yang terdiri dari 2 nilai logika,mempunyai sifat salah satu nya terletak pada sisi atau puncak baris yang sama, oleh karna itu sisi atau puncak baris yang sama itu merupakan variabel penyederhananaannya.
  • 11. Tidak ada lagi nilai- nilai logika yang dapat di hubungkan berati fungsi z ini, merupakan bentuk penyederhanaannya. Dengan demikian pengerjaan penyederhanaan dengan peta karnaugh telah berakhir. Langkah berikut nya mengambarkan bentuk penyederhanaan kedalam bentuk gerbang alur logika.
  • 12. Dari penyederhanaan fungsi z tadi, dapat digambarkanlah Gerbang alur logikanya. Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
  • 13. Dari penyederhanaan fungsi z tadi, dapat digambarkanlah Gerbang alur logikanya. Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
  • 14. Dari penyederhanaan fungsi z tadi, dapat digambarkanlah Gerbang alur logikanya. Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
  • 15. Dari penyederhanaan fungsi z tadi, dapat digambarkanlah Gerbang alur logikanya. Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
  • 16. Dari penyederhanaan fungsi z tadi, dapat digambarkanlah Gerbang alur logikanya. Keterangan: Gerbang AND/perkalian Gerbang Negasi/not/Komplemen Gerbang OR/penjumlahan Letakan gerbang sesuai dengan kodisinya/ pada variabel nya masing- masing.
  • 17. Dari pembuatan gerbang alur logika tadi, di peroleh hasil akhir Sebagai berikut: Catatan : Dalam membuat gerbang alur diperlukan ketelitian dalam menaruh letak garis sesuai dengan variabel yang yang akan dibuat. Setiap gerbang mewakili dari logika yang akan dibuat oleh karna itu pemberian gerbang harslah sesuai dengan bentuk logika nya.
  • 18. ?