際際滷

際際滷Share a Scribd company logo
IEEE International Conference on Healthcare Informatics / September 2014 
Knowledge-based Extraction of Measurement-Entity 
Relations from German Radiology Reports 
Heiner Oberkampf1,2, Claudia Bretschneider1, Sonja Zillner1, Bernhard Bauer2 and Matthias Hammon3 
1Siemens AG, Corporate Technology 
2University of Augsburg, Software Methodologies for Distributed Systems 
3University Hospital Erlangen, Department of Radiology 
Unrestricted 息 Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 2 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Measurements in Radiology 
Not comprehensive list 
Size 
length: 1D, 2D, 3D 
area, volume 
index (e.g. spleen index = width*height*depth) 
Density measured in Hounsfield scale (Hu) 
mainly in CT images 
minimal, maximal and mean density values for Regions of 
Interest (ROIs) 
Angle 
e.g. bone configurations or fractions 
Blood flow 
e.g. PET: myocardial blood flow and blood flow in brain 
 
1) Source: http://www.recist.com/recist-in-practice/19.html 
1) 
Page 3 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Size Measurements in Radiology Reports 
Example Sentences 
Leber mit kranio-kaudalem Durchmesser von 15,5 cm. 
Gr旦enprogrediente, unscharf abgrenzbare Hypodensit辰t links temporal nach kranial bis 
nach parietobasal reichend (IMA 7-22; aktuell etwa 8 x 7 x 6 cm - Voruntersuchung etwa 
4,5 x 3,5 cm) mit einzelnen, neuaufgetretenen, stippchenf旦rmigen Hyperdensit辰ten (IMA 
11-14). 
Etwas kaudal hiervon im Unterlappen am Lappenspalt zentral ein 1.3 cm (VU 1.3 cm) 
groer Rundherd mit weiterhin deutlich vermehrtem FDG-Uptake (SUV max. 3.9; VU 5.7; 
IMA 182) im Oberlappen lappenspaltnah ein 1.0 cm (VU 1.0 cm) groer Rundherd mit 
vermehrtem FDG-Uptake (SUV max. 0.8; VU 1.5; IMA 199) sowie auf gleicher H旦he im 
Unterlappen dorsal paravertebral zwei Rundherde mit Ausl辰ufern von 1.5 cm (VU 1.3 cm) 
und lateral hiervon zwei verschmolzene Lymphknoten von zusammen 1.7 cm 
Durchmesser (VU 1.5 cm + Satellit von 0.9 cm) mit deutlich vermehrtem FDG-Uptake 
(SUV max. 4.0; VU 3.2 bzw. SUV max. 6.6; VU 4.8; IMA 207) und im costophrenischen 
Winkel dorsal ein 0.9 cm (VU 0.5 cm) groer Rundherd mit vermehrtem FDG-Uptake 
(SUV max. 1.7; VU 1.7; IMA 234). 
Page 4 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Longitudinal Integration 
Image source: Automated Detection and Volumetric Segmentation of the Spleen in CT Scans M. Hammon, P. Dankerl, M. Kramer, S. Seifert, A. Tsymbal2, M. J. 
Costa2, R. Janka1, M. Uder1, A. Cavallaro 
Page 5 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Two Data Sets 
382 Lymphoma Patients 
 2584 reports 
 imaging modality: CT, MRI, US, 
Radiography,  
Diverse Internistic Patients 
 6007 reports 
 imaging modality: CT 
Page 6 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Size Measurements in Radiology Reports1) 
Mostly 1- and 2-dimensional and one or two per sentence. 
# sentences Type of measuements: Type of sentences: 
1-dim 
40% 
58% 
3-dim 
2% 
2-dim 
13109 
4820 
538 668 290 
1 2 3 4 >4 
# measurements contained in a sentence 
1) Based on a data set of 2854 German radiology reports of 377 lymphoma patients and one of 6007 of diverse internistic patients 
Page 7 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 8 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Size Specifications 
Commonly used types to describe the size of anatomical entities. 
Interval 
 Anterior-posterior diameter of liver normally 10-13 cm 
 Thickness of wall of gallbladder normally 0.1 -0.3 cm 
Normal Value 
with deviation 
 Truncus pulmonalis: 1.4 cm +/- 0.4 cm 
Upper Bound  Normal lymph node < 1 cm 
Lower Bound 
 Normal aorta diameter > 4 cm at root 
 Enlarged lymph node > 1 cm 
Basic form: anatomical entity, quality, value specification 
Note: Specifications might be age or gender specific 
Page 9 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
The Knowledge Model is based on existing biomedical ontologies. 
Reused Ontologies Knowledge Model Knowledge Resources 
Coverage 
 50 size specifications 
 38 different anatomical 
entities 
Representation 
 OWL 
Knowledge Representation 
Anatomical Entities 
 Radiological Lexicon (RadLex) 
 Foundational Model of Anatomy 
(FMA)1) 
Qualities 
 Ont. for Phenotypic Qualities (PATO)1) 
Value Specifications 
 Ont. for Biomedical Investigations 
(OBI)1) 
 Information Artifact Ontology (IAO)1) 
 Units Ontology (UO)1) 
 Model for Clinical Information (MCI) 
1) Part of the Open Biological and Biomedical Ontologies Foundry library http://www.obofoundry.org/ 
Page 10 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Normal Upper Bound Specification 
Example: Lymph nodes are normally < 1 cm. 
pato:normal 
pato:size 
pato:length 
pato:diameter 
:normalDiameterOfLy 
mphNode 
obi:scalar value 
specification 
iao:is quality specification of 
mci:upper bound 
specification 
obi:has value specification 
Quality Anatomical Entity 
bfo:inheres in 
iao:has measurement 
unit label 
radlex:lymph node 
_:ln 
Value Specification 
_:vs1 
uo:length unit 
uo:centimeter 
1.0^^xsd:float 
_:usp 
obi:has specified value 
Page 11 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Example: Normal diameter of the pulmonary atery is between 1.6 and 2.6 cm. 
Quality Anatomical Entity 
radlex:pulmonary 
atery 
pato:normal 
pato:size 
pato:length 
pato:diameter 
:normalDiameterOfPu _:pulmAtery 
Value Specification 
bfo:inheres in 
obi:scalar value 
specification 
iao:has measurement 
uo:length unit 
_:vs1 uo:centimeter 
unit label 
_:vs2 1.6^^xsd:float 
obi:has specified 
value 
Normal Interval Specification 
iao:is quality specification of 
mci:interval 
specification 
ro:has part 
2.6^^xsd:float 
obi:has value 
specification 
lmonaryAtery 
mci:upper bound 
specification 
_:ubsp 
mci:lower bound 
specification 
_:lbsp 
_:isp 
Page 12 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Example: Normal length of kidney along craniocaudal axis: 8.0  13.0 cm. 
Quality Anatomical Entity 
radlex:kidney 
_:kidney 
Value Specification 
pato:size bspo:transverse 
bfo:inheres in 
plane 
_:tp 
bspo:orthogonal_to 
obi:scalar value 
specification 
iao:has measurement 
uo:length unit 
_:vs1 uo:centimeter 
unit label 
_:vs2 8.0^^xsd:float 
obi:has specified 
value 
Normal Interval Specification 
iao:is quality specification of 
ro:has part 
13.0^^xsd:float 
obi:has value 
specification 
mci:interval 
specification 
_:isp 
pato:normal 
pato:length 
:normalLengthKidney 
Craniocaudal 
mci:upper bound 
specification 
_:ubsp 
mci:lower bound 
specification 
_:lbsp 
Page 13 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 14 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Semantic Annotation of Radiology Reports 
Recognition of entities from ontologies and measurements 
Enlarged lymph node right paraaortal below the renal pedicle now 23 mm. 
measurement 
value unit 
23 mm 
radlex:lymph node 
Page 15 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Semantic Annotation of Radiology Reports 
Functional Scope 
 Detection of multiword terms independent from the ordering of the individual tokens. 
 Respect sentence boundaries and map multiword terms only when they occur within 
these boundaries. 
 Recognition of inflected forms of ontological concepts in the text such as detection of 
plural form or other grammatical inflections based on stemmed forms. 
Technical Realization 
 builds on top of the UIMA framework 
 adapted form of the UIMA Concept Mapper 
 Outputs annotations in RDF 
Page 16 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Running Example 
The running example used during the description of the resolution algorithm 
Enlarged lymph node right paraaortal below the renal pedicle now 23 mm. 
Annotations: 
radlex:enlarged radlex:lymphadenopathy 
radlex:lymph node 
radlex:right 
radlex:paraaortic radlex:inferior 
radlex:inferior para-aortic lymph node 
radlex:kidney radlex:renal pedicle 
radlex:lateral aortic lymph node 
2.3 uo:centimeter 
Page 17 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 18 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Overview of Algorithm 
1. Using ontology structure of RadLex and create spanning tree for annotations. 
2. Compare Measurement values with Knowledge Model 
3. Compute a ranking and select the best entity 
Page 19 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Filter and Expand the Set of Annotations 
Use knowledge from the RadLex ontology 
RadLex entity 
imaging modality descriptor  
anatomical entity clinical finding imaging observation 
Anatomical_Site 
enlarged lymphadenopathy 
lymph node 
right 
paraaortic inferior 
inferior para-aortic lymph node 
kidney renal pedicle 
lateral aortic lymph node 
Page 20 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Minimal Spanning Tree 
Based on the set of relevant annotations we create a tree along the RadLex subclass hierarchy 
Sentence: 
Enlarged lymph node right paraaortal 
below the renal pedicle now 23 mm. 
Page 21 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Attach Normal Size Specifications 
For each entity of the spanning tree we retrieve available size specifications from the knowledge model. 
compValue: 0.73 compValue: 0.0 
normal: 0-1 cm 
craniocaudal extension: 8-13 cm enlarged: 1-5 cm 
anterior posterior diameter: 4 cm 
 compValue: 1.3 
compValue: 2.48  compValue: 0.0 
compValue: 0.73 
Sentence: 
Enlarged lymph node right paraaortal 
below the renal pedicle now 23 mm. 
Page 22 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Propagate Comparison Value 
compValue: 0.73 compValue: 0.0 
compValue: 0.0 
compValue: 0.0 compValue: 0.0 
Sentence: compValue: 0.0 
Enlarged lymph node right paraaortal 
below the renal pedicle now 23 mm. 
Page 23 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Ranking and Selection of Best Entity 
Take ranking includes the position in the RadLex hierarchy 
 Include position in RadLex hierarchy  more specific entities are preferred 
 Use threshold criteria to select best entity 
Enlarged lymph node right paraaortal below the renal pedicle now 23 mm. 
Structured Representation: 
radlex:inferior para-aortic lymph node 2.3 uo:centimeter 
Page 24 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 25 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Scope of the Algorithm 
The described algorithm resolves only one measurement-entity relation per sentence. 
In Scope Out of Scope 
 Sentences with two measurements about 
different entities. E.g. Splenomegaly with 
23.0 x 14.5 x 8.5 cm and approx. 1.0 cm 
lesion. 
 Sentences with more than two 
measurements 
 Sentences with one measurement 
 Sentences with two measurements where 
both measurements are about the same 
entity. E.g. 
Spleen now with 10.5 x 4.5 cm slightly 
smaller than in previous examination with 
13.3 x 6.7 cm. 
Page 26 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Scope of Algorithm 
Analysis of sentences in- and out-of-scope 
Reports on Lymphoma Patients Reports on Internistic Patients 
3980 
249 
791 
71 78 31 
1 2 3 4 >4 
# sentences 
# measurements contained in a sentence 
#Sentences out of Scope: 8.25% 
9129 
982 
2798 
467 590 259 
1 2 3 4 >4 
# sentences 
# measurements contained in a sentence 
#Sentences out of Scope: 16.15% 
Page 27 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Evaluation Schema 
Description Example 
correct  The entity resolved is exactly what 
the measurement is about 
 The radiologist cannot name a better 
entity 
Lymph node in mediastium 1.8 cm 
 mediastinal lymph node 
(correct)  The entity resolved is correct 
however it could be more specific 
 The radiologist can name a better 
entity 
Lymph node in jaw angle 1 cm 
 lymph node 
Radiologist: jugular lymph node 
unresolvable  The sentence does not allow a 
resolution 
 The algorithm did not resolve to a 
false entity 
The biggest is now 2.7 cm. 
Previously 53x18 mm. 
Craniocaudal diameter now 10.8 cm. 
false  The resolved entity is false or no 
entity was resolved 
 The radiologist can find the correct 
entity. 
Large metastasis in liver with a size of 
12.3 x 7.0 cm.  liver 
Radiologist: metastasis 
Page 28 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Evaluation Results 
Evaluation results for 500 randomly selected sentences for each data set. 
Lymphoma Internistic 
5% 
unresolvable 
21% 
50% 
24% 
false 
(correct) 
correct 
unresolvable 
4% 
19% 
44% 
34% 
false 
correct 
(correct) 
resolved 84%, unresolved 16% 
recall: 0.8698 
precision:0.8389 
F-measure: 0.8540 
resolved 80%, unresolved 20% 
recall:0.7904 
precision:0.7864 
F-measure: 0.7884 
Page 29 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Evaluation by Resolved Anatomical Entity 
Page 30 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved anatomical entity
Evaluation of Annotator 
Using RadLex brings the follwowing two problems when used for German text: 
1. Missing annotations 
 Only about 25% of all RadLex concepts have German labels 
 6.59% of all sentences get no relevant annotations 
 In 50% of the false resolutions, the correct entity was not annotated 
2. Wrong annotations due to unspecific synonyms 
 radlex:breast mass has synonyms: mass, nodule, lesion, nodular enhancement 
and area of enhancement 
 mass or lesion are annotated with radlex:breast mass and then the resolution 
algorithm often falsely resolves to breast mass. 
Page 31 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Limitations of a Pure Knowledge-based Approach 
We need to use the sentence context to better resolve more complex sentences. 
 normal size specifications overlap 
 measured entities are often not within the normal range 
 annotation quality 
 coverage 
 level of detail of RadLex concepts 
 wrong annotations due to synonyms 
 restriction to sentence boundaries 
 multiple measurements in one sentence 
 one measurement about multiple entities 
Page 32 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 33 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Outlook 
Adaptation of the algorithm already made: 
 Use adapted version of RadLex 
 Use statistics from the evaluated data set 
 Use distance within sentence 
 Now all sentences are in scope 
Ongoing: 
 Include context information about the quality: normal, enlarged 
 include annotations from previous sentence for unresolved sentences. 
 Density measurements 
Page 34 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Application 
Longitudinal view on reports from consequtive examinations 
Page 35 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
Ad

More Related Content

Similar to Knowledge-based Extraction of Measurement-Entity Relations from German Radiology Reports (20)

Role of sonography and mri in breast pathology pdf
Role of sonography and mri in breast pathology  pdfRole of sonography and mri in breast pathology  pdf
Role of sonography and mri in breast pathology pdf
Dr pradeep Kumar
Normal chest Xray: Fundamentals and Basic Interpretation (By Dr Nivedita Bari...
Normal chest Xray: Fundamentals and Basic Interpretation (By Dr Nivedita Bari...Normal chest Xray: Fundamentals and Basic Interpretation (By Dr Nivedita Bari...
Normal chest Xray: Fundamentals and Basic Interpretation (By Dr Nivedita Bari...
NiveditaBarik3
Approach to Head CT.ppt
Approach to Head CT.pptApproach to Head CT.ppt
Approach to Head CT.ppt
FatimaAmirlou
Chest X ray ( steps for interpretation)
Chest X ray ( steps for interpretation)Chest X ray ( steps for interpretation)
Chest X ray ( steps for interpretation)
Double M
Chest X-ray: Basics
Chest X-ray: BasicsChest X-ray: Basics
Chest X-ray: Basics
Tapendra Koirala
ct_imaging_2019_lyl_v01_2 ct_imaging_2019_lyl_v01_2 (1).pptxct_imaging_2019_l...
ct_imaging_2019_lyl_v01_2 ct_imaging_2019_lyl_v01_2 (1).pptxct_imaging_2019_l...ct_imaging_2019_lyl_v01_2 ct_imaging_2019_lyl_v01_2 (1).pptxct_imaging_2019_l...
ct_imaging_2019_lyl_v01_2 ct_imaging_2019_lyl_v01_2 (1).pptxct_imaging_2019_l...
Mercedes Del Pilar Canchihuaman
Ct head approach copy
Ct head approach   copyCt head approach   copy
Ct head approach copy
Yasser Asiri
ITMIG classification posterior mediastinal masses.pdf
ITMIG classification posterior mediastinal masses.pdfITMIG classification posterior mediastinal masses.pdf
ITMIG classification posterior mediastinal masses.pdf
PreetiMahla
Lymphadenopathy
LymphadenopathyLymphadenopathy
Lymphadenopathy
Beenish Iqbal
Role of Tomosynthesis in Assessing the Size of the Breast Lesion
Role of Tomosynthesis in Assessing the Size of the Breast LesionRole of Tomosynthesis in Assessing the Size of the Breast Lesion
Role of Tomosynthesis in Assessing the Size of the Breast Lesion
Apollo Hospitals
Approach to head ct
Approach to head ctApproach to head ct
Approach to head ct
DrLokesh Mahar
Viewing of the chest film
Viewing of the chest filmViewing of the chest film
Viewing of the chest film
Tarequl Shawrab
Chest X ray ppt.ppt
Chest X ray ppt.pptChest X ray ppt.ppt
Chest X ray ppt.ppt
nishantgupta867402
Mediastnum ppt
Mediastnum pptMediastnum ppt
Mediastnum ppt
jyomita
Imaging of enlarged lymph node
Imaging of enlarged lymph nodeImaging of enlarged lymph node
Imaging of enlarged lymph node
Ehab Elftouh
Breast contouring and planning techniques
Breast contouring and planning techniquesBreast contouring and planning techniques
Breast contouring and planning techniques
Rituraj Upadhyay
Multimodality imaging of the breast- BI-RADS
Multimodality imaging of the breast- BI-RADSMultimodality imaging of the breast- BI-RADS
Multimodality imaging of the breast- BI-RADS
RezaGolamaully
Anatomical aspects of radiology anatomy, differential diagnosis and the bas...
Anatomical aspects of radiology   anatomy, differential diagnosis and the bas...Anatomical aspects of radiology   anatomy, differential diagnosis and the bas...
Anatomical aspects of radiology anatomy, differential diagnosis and the bas...
markvilleus
59
5959
59
Dr. Muhammad Bin Zulfiqar
Lung y3 2018 19 tl
Lung y3 2018 19 tlLung y3 2018 19 tl
Lung y3 2018 19 tl
NurulhudabintiMatHas
Role of sonography and mri in breast pathology pdf
Role of sonography and mri in breast pathology  pdfRole of sonography and mri in breast pathology  pdf
Role of sonography and mri in breast pathology pdf
Dr pradeep Kumar
Normal chest Xray: Fundamentals and Basic Interpretation (By Dr Nivedita Bari...
Normal chest Xray: Fundamentals and Basic Interpretation (By Dr Nivedita Bari...Normal chest Xray: Fundamentals and Basic Interpretation (By Dr Nivedita Bari...
Normal chest Xray: Fundamentals and Basic Interpretation (By Dr Nivedita Bari...
NiveditaBarik3
Approach to Head CT.ppt
Approach to Head CT.pptApproach to Head CT.ppt
Approach to Head CT.ppt
FatimaAmirlou
Chest X ray ( steps for interpretation)
Chest X ray ( steps for interpretation)Chest X ray ( steps for interpretation)
Chest X ray ( steps for interpretation)
Double M
ct_imaging_2019_lyl_v01_2 ct_imaging_2019_lyl_v01_2 (1).pptxct_imaging_2019_l...
ct_imaging_2019_lyl_v01_2 ct_imaging_2019_lyl_v01_2 (1).pptxct_imaging_2019_l...ct_imaging_2019_lyl_v01_2 ct_imaging_2019_lyl_v01_2 (1).pptxct_imaging_2019_l...
ct_imaging_2019_lyl_v01_2 ct_imaging_2019_lyl_v01_2 (1).pptxct_imaging_2019_l...
Mercedes Del Pilar Canchihuaman
Ct head approach copy
Ct head approach   copyCt head approach   copy
Ct head approach copy
Yasser Asiri
ITMIG classification posterior mediastinal masses.pdf
ITMIG classification posterior mediastinal masses.pdfITMIG classification posterior mediastinal masses.pdf
ITMIG classification posterior mediastinal masses.pdf
PreetiMahla
Role of Tomosynthesis in Assessing the Size of the Breast Lesion
Role of Tomosynthesis in Assessing the Size of the Breast LesionRole of Tomosynthesis in Assessing the Size of the Breast Lesion
Role of Tomosynthesis in Assessing the Size of the Breast Lesion
Apollo Hospitals
Approach to head ct
Approach to head ctApproach to head ct
Approach to head ct
DrLokesh Mahar
Viewing of the chest film
Viewing of the chest filmViewing of the chest film
Viewing of the chest film
Tarequl Shawrab
Mediastnum ppt
Mediastnum pptMediastnum ppt
Mediastnum ppt
jyomita
Imaging of enlarged lymph node
Imaging of enlarged lymph nodeImaging of enlarged lymph node
Imaging of enlarged lymph node
Ehab Elftouh
Breast contouring and planning techniques
Breast contouring and planning techniquesBreast contouring and planning techniques
Breast contouring and planning techniques
Rituraj Upadhyay
Multimodality imaging of the breast- BI-RADS
Multimodality imaging of the breast- BI-RADSMultimodality imaging of the breast- BI-RADS
Multimodality imaging of the breast- BI-RADS
RezaGolamaully
Anatomical aspects of radiology anatomy, differential diagnosis and the bas...
Anatomical aspects of radiology   anatomy, differential diagnosis and the bas...Anatomical aspects of radiology   anatomy, differential diagnosis and the bas...
Anatomical aspects of radiology anatomy, differential diagnosis and the bas...
markvilleus

Recently uploaded (20)

03_10_gender_men_masculinity_reforms_policy.pdf
03_10_gender_men_masculinity_reforms_policy.pdf03_10_gender_men_masculinity_reforms_policy.pdf
03_10_gender_men_masculinity_reforms_policy.pdf
LucaMariaPesando1
L7-SL_en_際際滷s - LLMsIntroduction .pptx
L7-SL_en_際際滷s - LLMsIntroduction .pptxL7-SL_en_際際滷s - LLMsIntroduction .pptx
L7-SL_en_際際滷s - LLMsIntroduction .pptx
kenryostanikegbo
web-roadmap developer file information..
web-roadmap developer file information..web-roadmap developer file information..
web-roadmap developer file information..
pandeyarush01
390713553-Introduction-to-Apportionment-and-Voting.pptx
390713553-Introduction-to-Apportionment-and-Voting.pptx390713553-Introduction-to-Apportionment-and-Voting.pptx
390713553-Introduction-to-Apportionment-and-Voting.pptx
KhimJDAbordo
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays
Research presentations and statistics for computer science.pptx
Research presentations  and statistics for computer science.pptxResearch presentations  and statistics for computer science.pptx
Research presentations and statistics for computer science.pptx
vimbaimapfumo25
chapter-6 (1).pdf immunology innate immunity
chapter-6 (1).pdf immunology innate immunitychapter-6 (1).pdf immunology innate immunity
chapter-6 (1).pdf immunology innate immunity
bedadadenbal50
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
T207TrnVnt
TUG BD Kick Off Meet up 21 May 際際滷 Deck.pptx
TUG BD Kick Off Meet up 21 May 際際滷 Deck.pptxTUG BD Kick Off Meet up 21 May 際際滷 Deck.pptx
TUG BD Kick Off Meet up 21 May 際際滷 Deck.pptx
SaidAlHaque
Bringing data to life - Crime webinar Accessible.pptx
Bringing data to life - Crime webinar Accessible.pptxBringing data to life - Crime webinar Accessible.pptx
Bringing data to life - Crime webinar Accessible.pptx
Office for National Statistics
Mixed Methods Research.pptx education 201
Mixed Methods Research.pptx education 201Mixed Methods Research.pptx education 201
Mixed Methods Research.pptx education 201
GraceSolaa1
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays
FT Partners Research - FinTech in Africa-2.pdf
FT Partners Research - FinTech in Africa-2.pdfFT Partners Research - FinTech in Africa-2.pdf
FT Partners Research - FinTech in Africa-2.pdf
Obinna8
Gi畛i thi畛u m担 h狸nh h畛c nhi畛u t畉ng (deep learning models)
Gi畛i thi畛u m担 h狸nh h畛c nhi畛u t畉ng (deep learning models)Gi畛i thi畛u m担 h狸nh h畛c nhi畛u t畉ng (deep learning models)
Gi畛i thi畛u m担 h狸nh h畛c nhi畛u t畉ng (deep learning models)
nkphat
Lec 12.pdfghhjjhhjkkkkkkkkkkkjfcvhiiugcvvh
Lec 12.pdfghhjjhhjkkkkkkkkkkkjfcvhiiugcvvhLec 12.pdfghhjjhhjkkkkkkkkkkkjfcvhiiugcvvh
Lec 12.pdfghhjjhhjkkkkkkkkkkkjfcvhiiugcvvh
saifalroby72
Time series analysis & forecasting day 2.pptx
Time series analysis & forecasting day 2.pptxTime series analysis & forecasting day 2.pptx
Time series analysis & forecasting day 2.pptx
AsmaaMahmoud89
DIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdfDIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdf
aacj102006
Faces of the Future The Impact of a Data Science Course in Kerala.pdf
Faces of the Future The Impact of a Data Science Course in Kerala.pdfFaces of the Future The Impact of a Data Science Course in Kerala.pdf
Faces of the Future The Impact of a Data Science Course in Kerala.pdf
jzyphoenix
Professional Certificate in Applied AI and Machine Learning
Professional Certificate in Applied AI and Machine LearningProfessional Certificate in Applied AI and Machine Learning
Professional Certificate in Applied AI and Machine Learning
Nafisur Ahmed
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptxConcrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
ssuserd1f4a3
03_10_gender_men_masculinity_reforms_policy.pdf
03_10_gender_men_masculinity_reforms_policy.pdf03_10_gender_men_masculinity_reforms_policy.pdf
03_10_gender_men_masculinity_reforms_policy.pdf
LucaMariaPesando1
L7-SL_en_際際滷s - LLMsIntroduction .pptx
L7-SL_en_際際滷s - LLMsIntroduction .pptxL7-SL_en_際際滷s - LLMsIntroduction .pptx
L7-SL_en_際際滷s - LLMsIntroduction .pptx
kenryostanikegbo
web-roadmap developer file information..
web-roadmap developer file information..web-roadmap developer file information..
web-roadmap developer file information..
pandeyarush01
390713553-Introduction-to-Apportionment-and-Voting.pptx
390713553-Introduction-to-Apportionment-and-Voting.pptx390713553-Introduction-to-Apportionment-and-Voting.pptx
390713553-Introduction-to-Apportionment-and-Voting.pptx
KhimJDAbordo
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays New York 2025 - Build for ALL of Your Users by Anthony Lusardi (liblab)
apidays
Research presentations and statistics for computer science.pptx
Research presentations  and statistics for computer science.pptxResearch presentations  and statistics for computer science.pptx
Research presentations and statistics for computer science.pptx
vimbaimapfumo25
chapter-6 (1).pdf immunology innate immunity
chapter-6 (1).pdf immunology innate immunitychapter-6 (1).pdf immunology innate immunity
chapter-6 (1).pdf immunology innate immunity
bedadadenbal50
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
T207TrnVnt
TUG BD Kick Off Meet up 21 May 際際滷 Deck.pptx
TUG BD Kick Off Meet up 21 May 際際滷 Deck.pptxTUG BD Kick Off Meet up 21 May 際際滷 Deck.pptx
TUG BD Kick Off Meet up 21 May 際際滷 Deck.pptx
SaidAlHaque
Bringing data to life - Crime webinar Accessible.pptx
Bringing data to life - Crime webinar Accessible.pptxBringing data to life - Crime webinar Accessible.pptx
Bringing data to life - Crime webinar Accessible.pptx
Office for National Statistics
Mixed Methods Research.pptx education 201
Mixed Methods Research.pptx education 201Mixed Methods Research.pptx education 201
Mixed Methods Research.pptx education 201
GraceSolaa1
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays
FT Partners Research - FinTech in Africa-2.pdf
FT Partners Research - FinTech in Africa-2.pdfFT Partners Research - FinTech in Africa-2.pdf
FT Partners Research - FinTech in Africa-2.pdf
Obinna8
Gi畛i thi畛u m担 h狸nh h畛c nhi畛u t畉ng (deep learning models)
Gi畛i thi畛u m担 h狸nh h畛c nhi畛u t畉ng (deep learning models)Gi畛i thi畛u m担 h狸nh h畛c nhi畛u t畉ng (deep learning models)
Gi畛i thi畛u m担 h狸nh h畛c nhi畛u t畉ng (deep learning models)
nkphat
Lec 12.pdfghhjjhhjkkkkkkkkkkkjfcvhiiugcvvh
Lec 12.pdfghhjjhhjkkkkkkkkkkkjfcvhiiugcvvhLec 12.pdfghhjjhhjkkkkkkkkkkkjfcvhiiugcvvh
Lec 12.pdfghhjjhhjkkkkkkkkkkkjfcvhiiugcvvh
saifalroby72
Time series analysis & forecasting day 2.pptx
Time series analysis & forecasting day 2.pptxTime series analysis & forecasting day 2.pptx
Time series analysis & forecasting day 2.pptx
AsmaaMahmoud89
DIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdfDIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdf
aacj102006
Faces of the Future The Impact of a Data Science Course in Kerala.pdf
Faces of the Future The Impact of a Data Science Course in Kerala.pdfFaces of the Future The Impact of a Data Science Course in Kerala.pdf
Faces of the Future The Impact of a Data Science Course in Kerala.pdf
jzyphoenix
Professional Certificate in Applied AI and Machine Learning
Professional Certificate in Applied AI and Machine LearningProfessional Certificate in Applied AI and Machine Learning
Professional Certificate in Applied AI and Machine Learning
Nafisur Ahmed
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptxConcrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
ssuserd1f4a3
Ad

Knowledge-based Extraction of Measurement-Entity Relations from German Radiology Reports

  • 1. IEEE International Conference on Healthcare Informatics / September 2014 Knowledge-based Extraction of Measurement-Entity Relations from German Radiology Reports Heiner Oberkampf1,2, Claudia Bretschneider1, Sonja Zillner1, Bernhard Bauer2 and Matthias Hammon3 1Siemens AG, Corporate Technology 2University of Augsburg, Software Methodologies for Distributed Systems 3University Hospital Erlangen, Department of Radiology Unrestricted 息 Siemens AG 2014. All rights reserved
  • 2. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 2 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 3. Measurements in Radiology Not comprehensive list Size length: 1D, 2D, 3D area, volume index (e.g. spleen index = width*height*depth) Density measured in Hounsfield scale (Hu) mainly in CT images minimal, maximal and mean density values for Regions of Interest (ROIs) Angle e.g. bone configurations or fractions Blood flow e.g. PET: myocardial blood flow and blood flow in brain 1) Source: http://www.recist.com/recist-in-practice/19.html 1) Page 3 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 4. Size Measurements in Radiology Reports Example Sentences Leber mit kranio-kaudalem Durchmesser von 15,5 cm. Gr旦enprogrediente, unscharf abgrenzbare Hypodensit辰t links temporal nach kranial bis nach parietobasal reichend (IMA 7-22; aktuell etwa 8 x 7 x 6 cm - Voruntersuchung etwa 4,5 x 3,5 cm) mit einzelnen, neuaufgetretenen, stippchenf旦rmigen Hyperdensit辰ten (IMA 11-14). Etwas kaudal hiervon im Unterlappen am Lappenspalt zentral ein 1.3 cm (VU 1.3 cm) groer Rundherd mit weiterhin deutlich vermehrtem FDG-Uptake (SUV max. 3.9; VU 5.7; IMA 182) im Oberlappen lappenspaltnah ein 1.0 cm (VU 1.0 cm) groer Rundherd mit vermehrtem FDG-Uptake (SUV max. 0.8; VU 1.5; IMA 199) sowie auf gleicher H旦he im Unterlappen dorsal paravertebral zwei Rundherde mit Ausl辰ufern von 1.5 cm (VU 1.3 cm) und lateral hiervon zwei verschmolzene Lymphknoten von zusammen 1.7 cm Durchmesser (VU 1.5 cm + Satellit von 0.9 cm) mit deutlich vermehrtem FDG-Uptake (SUV max. 4.0; VU 3.2 bzw. SUV max. 6.6; VU 4.8; IMA 207) und im costophrenischen Winkel dorsal ein 0.9 cm (VU 0.5 cm) groer Rundherd mit vermehrtem FDG-Uptake (SUV max. 1.7; VU 1.7; IMA 234). Page 4 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 5. Longitudinal Integration Image source: Automated Detection and Volumetric Segmentation of the Spleen in CT Scans M. Hammon, P. Dankerl, M. Kramer, S. Seifert, A. Tsymbal2, M. J. Costa2, R. Janka1, M. Uder1, A. Cavallaro Page 5 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 6. Two Data Sets 382 Lymphoma Patients 2584 reports imaging modality: CT, MRI, US, Radiography, Diverse Internistic Patients 6007 reports imaging modality: CT Page 6 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 7. Size Measurements in Radiology Reports1) Mostly 1- and 2-dimensional and one or two per sentence. # sentences Type of measuements: Type of sentences: 1-dim 40% 58% 3-dim 2% 2-dim 13109 4820 538 668 290 1 2 3 4 >4 # measurements contained in a sentence 1) Based on a data set of 2854 German radiology reports of 377 lymphoma patients and one of 6007 of diverse internistic patients Page 7 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 8. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 8 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 9. Size Specifications Commonly used types to describe the size of anatomical entities. Interval Anterior-posterior diameter of liver normally 10-13 cm Thickness of wall of gallbladder normally 0.1 -0.3 cm Normal Value with deviation Truncus pulmonalis: 1.4 cm +/- 0.4 cm Upper Bound Normal lymph node < 1 cm Lower Bound Normal aorta diameter > 4 cm at root Enlarged lymph node > 1 cm Basic form: anatomical entity, quality, value specification Note: Specifications might be age or gender specific Page 9 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 10. The Knowledge Model is based on existing biomedical ontologies. Reused Ontologies Knowledge Model Knowledge Resources Coverage 50 size specifications 38 different anatomical entities Representation OWL Knowledge Representation Anatomical Entities Radiological Lexicon (RadLex) Foundational Model of Anatomy (FMA)1) Qualities Ont. for Phenotypic Qualities (PATO)1) Value Specifications Ont. for Biomedical Investigations (OBI)1) Information Artifact Ontology (IAO)1) Units Ontology (UO)1) Model for Clinical Information (MCI) 1) Part of the Open Biological and Biomedical Ontologies Foundry library http://www.obofoundry.org/ Page 10 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 11. Normal Upper Bound Specification Example: Lymph nodes are normally < 1 cm. pato:normal pato:size pato:length pato:diameter :normalDiameterOfLy mphNode obi:scalar value specification iao:is quality specification of mci:upper bound specification obi:has value specification Quality Anatomical Entity bfo:inheres in iao:has measurement unit label radlex:lymph node _:ln Value Specification _:vs1 uo:length unit uo:centimeter 1.0^^xsd:float _:usp obi:has specified value Page 11 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 12. Example: Normal diameter of the pulmonary atery is between 1.6 and 2.6 cm. Quality Anatomical Entity radlex:pulmonary atery pato:normal pato:size pato:length pato:diameter :normalDiameterOfPu _:pulmAtery Value Specification bfo:inheres in obi:scalar value specification iao:has measurement uo:length unit _:vs1 uo:centimeter unit label _:vs2 1.6^^xsd:float obi:has specified value Normal Interval Specification iao:is quality specification of mci:interval specification ro:has part 2.6^^xsd:float obi:has value specification lmonaryAtery mci:upper bound specification _:ubsp mci:lower bound specification _:lbsp _:isp Page 12 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 13. Example: Normal length of kidney along craniocaudal axis: 8.0 13.0 cm. Quality Anatomical Entity radlex:kidney _:kidney Value Specification pato:size bspo:transverse bfo:inheres in plane _:tp bspo:orthogonal_to obi:scalar value specification iao:has measurement uo:length unit _:vs1 uo:centimeter unit label _:vs2 8.0^^xsd:float obi:has specified value Normal Interval Specification iao:is quality specification of ro:has part 13.0^^xsd:float obi:has value specification mci:interval specification _:isp pato:normal pato:length :normalLengthKidney Craniocaudal mci:upper bound specification _:ubsp mci:lower bound specification _:lbsp Page 13 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 14. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 14 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 15. Semantic Annotation of Radiology Reports Recognition of entities from ontologies and measurements Enlarged lymph node right paraaortal below the renal pedicle now 23 mm. measurement value unit 23 mm radlex:lymph node Page 15 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 16. Semantic Annotation of Radiology Reports Functional Scope Detection of multiword terms independent from the ordering of the individual tokens. Respect sentence boundaries and map multiword terms only when they occur within these boundaries. Recognition of inflected forms of ontological concepts in the text such as detection of plural form or other grammatical inflections based on stemmed forms. Technical Realization builds on top of the UIMA framework adapted form of the UIMA Concept Mapper Outputs annotations in RDF Page 16 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 17. Running Example The running example used during the description of the resolution algorithm Enlarged lymph node right paraaortal below the renal pedicle now 23 mm. Annotations: radlex:enlarged radlex:lymphadenopathy radlex:lymph node radlex:right radlex:paraaortic radlex:inferior radlex:inferior para-aortic lymph node radlex:kidney radlex:renal pedicle radlex:lateral aortic lymph node 2.3 uo:centimeter Page 17 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 18. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 18 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 19. Overview of Algorithm 1. Using ontology structure of RadLex and create spanning tree for annotations. 2. Compare Measurement values with Knowledge Model 3. Compute a ranking and select the best entity Page 19 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 20. Filter and Expand the Set of Annotations Use knowledge from the RadLex ontology RadLex entity imaging modality descriptor anatomical entity clinical finding imaging observation Anatomical_Site enlarged lymphadenopathy lymph node right paraaortic inferior inferior para-aortic lymph node kidney renal pedicle lateral aortic lymph node Page 20 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 21. Minimal Spanning Tree Based on the set of relevant annotations we create a tree along the RadLex subclass hierarchy Sentence: Enlarged lymph node right paraaortal below the renal pedicle now 23 mm. Page 21 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 22. Attach Normal Size Specifications For each entity of the spanning tree we retrieve available size specifications from the knowledge model. compValue: 0.73 compValue: 0.0 normal: 0-1 cm craniocaudal extension: 8-13 cm enlarged: 1-5 cm anterior posterior diameter: 4 cm compValue: 1.3 compValue: 2.48 compValue: 0.0 compValue: 0.73 Sentence: Enlarged lymph node right paraaortal below the renal pedicle now 23 mm. Page 22 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 23. Propagate Comparison Value compValue: 0.73 compValue: 0.0 compValue: 0.0 compValue: 0.0 compValue: 0.0 Sentence: compValue: 0.0 Enlarged lymph node right paraaortal below the renal pedicle now 23 mm. Page 23 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 24. Ranking and Selection of Best Entity Take ranking includes the position in the RadLex hierarchy Include position in RadLex hierarchy more specific entities are preferred Use threshold criteria to select best entity Enlarged lymph node right paraaortal below the renal pedicle now 23 mm. Structured Representation: radlex:inferior para-aortic lymph node 2.3 uo:centimeter Page 24 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 25. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 25 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 26. Scope of the Algorithm The described algorithm resolves only one measurement-entity relation per sentence. In Scope Out of Scope Sentences with two measurements about different entities. E.g. Splenomegaly with 23.0 x 14.5 x 8.5 cm and approx. 1.0 cm lesion. Sentences with more than two measurements Sentences with one measurement Sentences with two measurements where both measurements are about the same entity. E.g. Spleen now with 10.5 x 4.5 cm slightly smaller than in previous examination with 13.3 x 6.7 cm. Page 26 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 27. Scope of Algorithm Analysis of sentences in- and out-of-scope Reports on Lymphoma Patients Reports on Internistic Patients 3980 249 791 71 78 31 1 2 3 4 >4 # sentences # measurements contained in a sentence #Sentences out of Scope: 8.25% 9129 982 2798 467 590 259 1 2 3 4 >4 # sentences # measurements contained in a sentence #Sentences out of Scope: 16.15% Page 27 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 28. Evaluation Schema Description Example correct The entity resolved is exactly what the measurement is about The radiologist cannot name a better entity Lymph node in mediastium 1.8 cm mediastinal lymph node (correct) The entity resolved is correct however it could be more specific The radiologist can name a better entity Lymph node in jaw angle 1 cm lymph node Radiologist: jugular lymph node unresolvable The sentence does not allow a resolution The algorithm did not resolve to a false entity The biggest is now 2.7 cm. Previously 53x18 mm. Craniocaudal diameter now 10.8 cm. false The resolved entity is false or no entity was resolved The radiologist can find the correct entity. Large metastasis in liver with a size of 12.3 x 7.0 cm. liver Radiologist: metastasis Page 28 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 29. Evaluation Results Evaluation results for 500 randomly selected sentences for each data set. Lymphoma Internistic 5% unresolvable 21% 50% 24% false (correct) correct unresolvable 4% 19% 44% 34% false correct (correct) resolved 84%, unresolved 16% recall: 0.8698 precision:0.8389 F-measure: 0.8540 resolved 80%, unresolved 20% recall:0.7904 precision:0.7864 F-measure: 0.7884 Page 29 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 30. Evaluation by Resolved Anatomical Entity Page 30 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved anatomical entity
  • 31. Evaluation of Annotator Using RadLex brings the follwowing two problems when used for German text: 1. Missing annotations Only about 25% of all RadLex concepts have German labels 6.59% of all sentences get no relevant annotations In 50% of the false resolutions, the correct entity was not annotated 2. Wrong annotations due to unspecific synonyms radlex:breast mass has synonyms: mass, nodule, lesion, nodular enhancement and area of enhancement mass or lesion are annotated with radlex:breast mass and then the resolution algorithm often falsely resolves to breast mass. Page 31 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 32. Limitations of a Pure Knowledge-based Approach We need to use the sentence context to better resolve more complex sentences. normal size specifications overlap measured entities are often not within the normal range annotation quality coverage level of detail of RadLex concepts wrong annotations due to synonyms restriction to sentence boundaries multiple measurements in one sentence one measurement about multiple entities Page 32 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 33. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 33 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 34. Outlook Adaptation of the algorithm already made: Use adapted version of RadLex Use statistics from the evaluated data set Use distance within sentence Now all sentences are in scope Ongoing: Include context information about the quality: normal, enlarged include annotations from previous sentence for unresolved sentences. Density measurements Page 34 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved
  • 35. Application Longitudinal view on reports from consequtive examinations Page 35 September 2014 Corporate Technology Restricted 息 Siemens AG 2014. All rights reserved