狠狠撸

狠狠撸Share a Scribd company logo
IEEE International Conference on Healthcare Informatics / September 2014 
Knowledge-based Extraction of Measurement-Entity 
Relations from German Radiology Reports 
Heiner Oberkampf1,2, Claudia Bretschneider1, Sonja Zillner1, Bernhard Bauer2 and Matthias Hammon3 
1Siemens AG, Corporate Technology 
2University of Augsburg, Software Methodologies for Distributed Systems 
3University Hospital Erlangen, Department of Radiology 
Unrestricted ? Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 2 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Measurements in Radiology 
Not comprehensive list 
Size 
length: 1D, 2D, 3D 
area, volume 
index (e.g. spleen index = width*height*depth) 
Density measured in Hounsfield scale (Hu) 
mainly in CT images 
minimal, maximal and mean density values for Regions of 
Interest (ROIs) 
Angle 
e.g. bone configurations or fractions 
Blood flow 
e.g. PET: myocardial blood flow and blood flow in brain 
… 
1) Source: http://www.recist.com/recist-in-practice/19.html 
1) 
Page 3 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Size Measurements in Radiology Reports 
Example Sentences 
Leber mit kranio-kaudalem Durchmesser von 15,5 cm. 
Gr??enprogrediente, unscharf abgrenzbare Hypodensit?t links temporal nach kranial bis 
nach parietobasal reichend (IMA 7-22; aktuell etwa 8 x 7 x 6 cm - Voruntersuchung etwa 
4,5 x 3,5 cm) mit einzelnen, neuaufgetretenen, stippchenf?rmigen Hyperdensit?ten (IMA 
11-14). 
Etwas kaudal hiervon im Unterlappen am Lappenspalt zentral ein 1.3 cm (VU 1.3 cm) 
gro?er Rundherd mit weiterhin deutlich vermehrtem FDG-Uptake (SUV max. 3.9; VU 5.7; 
IMA 182) im Oberlappen lappenspaltnah ein 1.0 cm (VU 1.0 cm) gro?er Rundherd mit 
vermehrtem FDG-Uptake (SUV max. 0.8; VU 1.5; IMA 199) sowie auf gleicher H?he im 
Unterlappen dorsal paravertebral zwei Rundherde mit Ausl?ufern von 1.5 cm (VU 1.3 cm) 
und lateral hiervon zwei verschmolzene Lymphknoten von zusammen 1.7 cm 
Durchmesser (VU 1.5 cm + Satellit von 0.9 cm) mit deutlich vermehrtem FDG-Uptake 
(SUV max. 4.0; VU 3.2 bzw. SUV max. 6.6; VU 4.8; IMA 207) und im costophrenischen 
Winkel dorsal ein 0.9 cm (VU 0.5 cm) gro?er Rundherd mit vermehrtem FDG-Uptake 
(SUV max. 1.7; VU 1.7; IMA 234). 
Page 4 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Longitudinal Integration 
Image source: “Automated Detection and Volumetric Segmentation of the Spleen in CT Scans” M. Hammon, P. Dankerl, M. Kramer, S. Seifert, A. Tsymbal2, M. J. 
Costa2, R. Janka1, M. Uder1, A. Cavallaro 
Page 5 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Two Data Sets 
382 Lymphoma Patients 
? 2584 reports 
? imaging modality: CT, MRI, US, 
Radiography, … 
Diverse Internistic Patients 
? 6007 reports 
? imaging modality: CT 
Page 6 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Size Measurements in Radiology Reports1) 
Mostly 1- and 2-dimensional and one or two per sentence. 
# sentences Type of measuements: Type of sentences: 
1-dim 
40% 
58% 
3-dim 
2% 
2-dim 
13109 
4820 
538 668 290 
1 2 3 4 >4 
# measurements contained in a sentence 
1) Based on a data set of 2854 German radiology reports of 377 lymphoma patients and one of 6007 of diverse internistic patients 
Page 7 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 8 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Size Specifications 
Commonly used types to describe the size of anatomical entities. 
Interval 
? Anterior-posterior diameter of liver normally 10-13 cm 
? Thickness of wall of gallbladder normally 0.1 -0.3 cm 
Normal Value 
with deviation 
? Truncus pulmonalis: 1.4 cm +/- 0.4 cm 
Upper Bound ? Normal lymph node < 1 cm 
Lower Bound 
? Normal aorta diameter > 4 cm at root 
? Enlarged lymph node > 1 cm 
Basic form: anatomical entity, quality, value specification 
Note: Specifications might be age or gender specific 
Page 9 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
The Knowledge Model is based on existing biomedical ontologies. 
Reused Ontologies Knowledge Model Knowledge Resources 
Coverage 
? 50 size specifications 
? 38 different anatomical 
entities 
Representation 
? OWL 
Knowledge Representation 
Anatomical Entities 
? Radiological Lexicon (RadLex) 
? Foundational Model of Anatomy 
(FMA)1) 
Qualities 
? Ont. for Phenotypic Qualities (PATO)1) 
Value Specifications 
? Ont. for Biomedical Investigations 
(OBI)1) 
? Information Artifact Ontology (IAO)1) 
? Units Ontology (UO)1) 
? Model for Clinical Information (MCI) 
1) Part of the Open Biological and Biomedical Ontologies Foundry library http://www.obofoundry.org/ 
Page 10 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Normal Upper Bound Specification 
Example: Lymph nodes are normally < 1 cm. 
pato:normal 
pato:size 
pato:length 
pato:diameter 
:normalDiameterOfLy 
mphNode 
obi:scalar value 
specification 
iao:is quality specification of 
mci:upper bound 
specification 
obi:has value specification 
Quality Anatomical Entity 
bfo:inheres in 
iao:has measurement 
unit label 
radlex:lymph node 
_:ln 
Value Specification 
_:vs1 
uo:length unit 
uo:centimeter 
“1.0”^^xsd:float 
_:usp 
obi:has specified value 
Page 11 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Example: Normal diameter of the pulmonary atery is between 1.6 and 2.6 cm. 
Quality Anatomical Entity 
radlex:pulmonary 
atery 
pato:normal 
pato:size 
pato:length 
pato:diameter 
:normalDiameterOfPu _:pulmAtery 
Value Specification 
bfo:inheres in 
obi:scalar value 
specification 
iao:has measurement 
uo:length unit 
_:vs1 uo:centimeter 
unit label 
_:vs2 “1.6”^^xsd:float 
obi:has specified 
value 
Normal Interval Specification 
iao:is quality specification of 
mci:interval 
specification 
ro:has part 
“2.6”^^xsd:float 
obi:has value 
specification 
lmonaryAtery 
mci:upper bound 
specification 
_:ubsp 
mci:lower bound 
specification 
_:lbsp 
_:isp 
Page 12 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Example: Normal length of kidney along craniocaudal axis: 8.0 – 13.0 cm. 
Quality Anatomical Entity 
radlex:kidney 
_:kidney 
Value Specification 
pato:size bspo:transverse 
bfo:inheres in 
plane 
_:tp 
bspo:orthogonal_to 
obi:scalar value 
specification 
iao:has measurement 
uo:length unit 
_:vs1 uo:centimeter 
unit label 
_:vs2 “8.0”^^xsd:float 
obi:has specified 
value 
Normal Interval Specification 
iao:is quality specification of 
ro:has part 
“13.0”^^xsd:float 
obi:has value 
specification 
mci:interval 
specification 
_:isp 
pato:normal 
pato:length 
:normalLengthKidney 
Craniocaudal 
mci:upper bound 
specification 
_:ubsp 
mci:lower bound 
specification 
_:lbsp 
Page 13 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 14 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Semantic Annotation of Radiology Reports 
Recognition of entities from ontologies and measurements 
“Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.” 
measurement 
value unit 
23 mm 
radlex:lymph node 
Page 15 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Semantic Annotation of Radiology Reports 
Functional Scope 
? Detection of multiword terms independent from the ordering of the individual tokens. 
? Respect sentence boundaries and map multiword terms only when they occur within 
these boundaries. 
? Recognition of inflected forms of ontological concepts in the text such as detection of 
plural form or other grammatical inflections based on stemmed forms. 
Technical Realization 
? builds on top of the UIMA framework 
? adapted form of the UIMA Concept Mapper 
? Outputs annotations in RDF 
Page 16 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Running Example 
The running example used during the description of the resolution algorithm 
“Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.” 
Annotations: 
radlex:enlarged radlex:lymphadenopathy 
radlex:lymph node 
radlex:right 
radlex:paraaortic radlex:inferior 
radlex:inferior para-aortic lymph node 
radlex:kidney radlex:renal pedicle 
radlex:lateral aortic lymph node 
2.3 uo:centimeter 
Page 17 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 18 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Overview of Algorithm 
1. Using ontology structure of RadLex and create spanning tree for annotations. 
2. Compare Measurement values with Knowledge Model 
3. Compute a ranking and select the best entity 
Page 19 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Filter and Expand the Set of Annotations 
Use knowledge from the RadLex ontology 
RadLex entity 
imaging modality descriptor … 
anatomical entity clinical finding imaging observation 
Anatomical_Site 
enlarged lymphadenopathy 
lymph node 
right 
paraaortic inferior 
inferior para-aortic lymph node 
kidney renal pedicle 
lateral aortic lymph node 
Page 20 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Minimal Spanning Tree 
Based on the set of relevant annotations we create a tree along the RadLex subclass hierarchy 
Sentence: 
“Enlarged lymph node right paraaortal 
below the renal pedicle now 23 mm.” 
Page 21 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Attach Normal Size Specifications 
For each entity of the spanning tree we retrieve available size specifications from the knowledge model. 
compValue: 0.73 compValue: 0.0 
normal: 0-1 cm 
craniocaudal extension: 8-13 cm enlarged: 1-5 cm 
anterior posterior diameter: 4 cm 
? compValue: 1.3 
?compValue: 2.48 ? compValue: 0.0 
?compValue: 0.73 
Sentence: 
“Enlarged lymph node right paraaortal 
below the renal pedicle now 23 mm.” 
Page 22 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Propagate Comparison Value 
compValue: 0.73 compValue: 0.0 
compValue: 0.0 
compValue: 0.0 compValue: 0.0 
Sentence: compValue: 0.0 
“Enlarged lymph node right paraaortal 
below the renal pedicle now 23 mm.” 
Page 23 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Ranking and Selection of Best Entity 
Take ranking includes the position in the RadLex hierarchy 
? Include position in RadLex hierarchy ? more specific entities are preferred 
? Use threshold criteria to select best entity 
“Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.” 
Structured Representation: 
radlex:inferior para-aortic lymph node 2.3 uo:centimeter 
Page 24 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 25 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Scope of the Algorithm 
The described algorithm resolves only one measurement-entity relation per sentence. 
In Scope Out of Scope 
? Sentences with two measurements about 
different entities. E.g. “Splenomegaly with 
23.0 x 14.5 x 8.5 cm and approx. 1.0 cm 
lesion.” 
? Sentences with more than two 
measurements 
? Sentences with one measurement 
? Sentences with two measurements where 
both measurements are about the same 
entity. E.g. 
“Spleen now with 10.5 x 4.5 cm slightly 
smaller than in previous examination with 
13.3 x 6.7 cm.” 
Page 26 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Scope of Algorithm 
Analysis of sentences in- and out-of-scope 
Reports on Lymphoma Patients Reports on Internistic Patients 
3980 
249 
791 
71 78 31 
1 2 3 4 >4 
# sentences 
# measurements contained in a sentence 
#Sentences out of Scope: 8.25% 
9129 
982 
2798 
467 590 259 
1 2 3 4 >4 
# sentences 
# measurements contained in a sentence 
#Sentences out of Scope: 16.15% 
Page 27 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Evaluation Schema 
Description Example 
correct ? The entity resolved is exactly what 
the measurement is about 
? The radiologist cannot name a better 
entity 
“Lymph node in mediastium 1.8 cm” 
? mediastinal lymph node 
(correct) ? The entity resolved is correct 
however it could be more specific 
? The radiologist can name a better 
entity 
“Lymph node in jaw angle 1 cm” 
? lymph node 
Radiologist: jugular lymph node 
unresolvable ? The sentence does not allow a 
resolution 
? The algorithm did not resolve to a 
false entity 
“The biggest is now 2.7 cm.” 
“Previously 53x18 mm.” 
“Craniocaudal diameter now 10.8 cm.” 
false ? The resolved entity is false or no 
entity was resolved 
? The radiologist can find the correct 
entity. 
“Large metastasis in liver with a size of 
12.3 x 7.0 cm.” ? liver 
Radiologist: metastasis 
Page 28 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Evaluation Results 
Evaluation results for 500 randomly selected sentences for each data set. 
Lymphoma Internistic 
5% 
unresolvable 
21% 
50% 
24% 
false 
(correct) 
correct 
unresolvable 
4% 
19% 
44% 
34% 
false 
correct 
(correct) 
resolved 84%, unresolved 16% 
recall: 0.8698 
precision:0.8389 
F-measure: 0.8540 
resolved 80%, unresolved 20% 
recall:0.7904 
precision:0.7864 
F-measure: 0.7884 
Page 29 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Evaluation by Resolved Anatomical Entity 
Page 30 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved anatomical entity
Evaluation of Annotator 
Using RadLex brings the follwowing two problems when used for German text: 
1. Missing annotations 
? Only about 25% of all RadLex concepts have German labels 
? 6.59% of all sentences get no relevant annotations 
? In 50% of the false resolutions, the correct entity was not annotated 
2. Wrong annotations due to unspecific synonyms 
? ‘radlex:breast mass’ has synonyms: ‘mass’, ‘nodule’, ‘lesion’, ‘nodular enhancement’ 
and ‘area of enhancement’ 
? ‘mass’ or ‘lesion’ are annotated with ‘radlex:breast mass’ and then the resolution 
algorithm often falsely resolves to ‘breast mass’. 
Page 31 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Limitations of a Pure Knowledge-based Approach 
We need to use the sentence context to better resolve more complex sentences. 
? normal size specifications overlap 
? measured entities are often not within the normal range 
? annotation quality 
? coverage 
? level of detail of RadLex concepts 
? wrong annotations due to synonyms 
? restriction to sentence boundaries 
? multiple measurements in one sentence 
? one measurement about multiple entities 
Page 32 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Agenda 
Measurements in Radiology 
Knowledge Model 
Semantic Annotation of Radiology Reports 
Extraction Algorithm 
Evaluation 
Outlook 
Page 33 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Outlook 
Adaptation of the algorithm already made: 
? Use adapted version of RadLex 
? Use statistics from the evaluated data set 
? Use distance within sentence 
? Now all sentences are in scope 
Ongoing: 
? Include context information about the quality: normal, enlarged… 
? include annotations from previous sentence for unresolved sentences. 
? Density measurements 
Page 34 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
Application 
Longitudinal view on reports from consequtive examinations 
Page 35 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved

More Related Content

Knowledge-based Extraction of Measurement-Entity Relations from German Radiology Reports

  • 1. IEEE International Conference on Healthcare Informatics / September 2014 Knowledge-based Extraction of Measurement-Entity Relations from German Radiology Reports Heiner Oberkampf1,2, Claudia Bretschneider1, Sonja Zillner1, Bernhard Bauer2 and Matthias Hammon3 1Siemens AG, Corporate Technology 2University of Augsburg, Software Methodologies for Distributed Systems 3University Hospital Erlangen, Department of Radiology Unrestricted ? Siemens AG 2014. All rights reserved
  • 2. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 2 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 3. Measurements in Radiology Not comprehensive list Size length: 1D, 2D, 3D area, volume index (e.g. spleen index = width*height*depth) Density measured in Hounsfield scale (Hu) mainly in CT images minimal, maximal and mean density values for Regions of Interest (ROIs) Angle e.g. bone configurations or fractions Blood flow e.g. PET: myocardial blood flow and blood flow in brain … 1) Source: http://www.recist.com/recist-in-practice/19.html 1) Page 3 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 4. Size Measurements in Radiology Reports Example Sentences Leber mit kranio-kaudalem Durchmesser von 15,5 cm. Gr??enprogrediente, unscharf abgrenzbare Hypodensit?t links temporal nach kranial bis nach parietobasal reichend (IMA 7-22; aktuell etwa 8 x 7 x 6 cm - Voruntersuchung etwa 4,5 x 3,5 cm) mit einzelnen, neuaufgetretenen, stippchenf?rmigen Hyperdensit?ten (IMA 11-14). Etwas kaudal hiervon im Unterlappen am Lappenspalt zentral ein 1.3 cm (VU 1.3 cm) gro?er Rundherd mit weiterhin deutlich vermehrtem FDG-Uptake (SUV max. 3.9; VU 5.7; IMA 182) im Oberlappen lappenspaltnah ein 1.0 cm (VU 1.0 cm) gro?er Rundherd mit vermehrtem FDG-Uptake (SUV max. 0.8; VU 1.5; IMA 199) sowie auf gleicher H?he im Unterlappen dorsal paravertebral zwei Rundherde mit Ausl?ufern von 1.5 cm (VU 1.3 cm) und lateral hiervon zwei verschmolzene Lymphknoten von zusammen 1.7 cm Durchmesser (VU 1.5 cm + Satellit von 0.9 cm) mit deutlich vermehrtem FDG-Uptake (SUV max. 4.0; VU 3.2 bzw. SUV max. 6.6; VU 4.8; IMA 207) und im costophrenischen Winkel dorsal ein 0.9 cm (VU 0.5 cm) gro?er Rundherd mit vermehrtem FDG-Uptake (SUV max. 1.7; VU 1.7; IMA 234). Page 4 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 5. Longitudinal Integration Image source: “Automated Detection and Volumetric Segmentation of the Spleen in CT Scans” M. Hammon, P. Dankerl, M. Kramer, S. Seifert, A. Tsymbal2, M. J. Costa2, R. Janka1, M. Uder1, A. Cavallaro Page 5 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 6. Two Data Sets 382 Lymphoma Patients ? 2584 reports ? imaging modality: CT, MRI, US, Radiography, … Diverse Internistic Patients ? 6007 reports ? imaging modality: CT Page 6 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 7. Size Measurements in Radiology Reports1) Mostly 1- and 2-dimensional and one or two per sentence. # sentences Type of measuements: Type of sentences: 1-dim 40% 58% 3-dim 2% 2-dim 13109 4820 538 668 290 1 2 3 4 >4 # measurements contained in a sentence 1) Based on a data set of 2854 German radiology reports of 377 lymphoma patients and one of 6007 of diverse internistic patients Page 7 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 8. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 8 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 9. Size Specifications Commonly used types to describe the size of anatomical entities. Interval ? Anterior-posterior diameter of liver normally 10-13 cm ? Thickness of wall of gallbladder normally 0.1 -0.3 cm Normal Value with deviation ? Truncus pulmonalis: 1.4 cm +/- 0.4 cm Upper Bound ? Normal lymph node < 1 cm Lower Bound ? Normal aorta diameter > 4 cm at root ? Enlarged lymph node > 1 cm Basic form: anatomical entity, quality, value specification Note: Specifications might be age or gender specific Page 9 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 10. The Knowledge Model is based on existing biomedical ontologies. Reused Ontologies Knowledge Model Knowledge Resources Coverage ? 50 size specifications ? 38 different anatomical entities Representation ? OWL Knowledge Representation Anatomical Entities ? Radiological Lexicon (RadLex) ? Foundational Model of Anatomy (FMA)1) Qualities ? Ont. for Phenotypic Qualities (PATO)1) Value Specifications ? Ont. for Biomedical Investigations (OBI)1) ? Information Artifact Ontology (IAO)1) ? Units Ontology (UO)1) ? Model for Clinical Information (MCI) 1) Part of the Open Biological and Biomedical Ontologies Foundry library http://www.obofoundry.org/ Page 10 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 11. Normal Upper Bound Specification Example: Lymph nodes are normally < 1 cm. pato:normal pato:size pato:length pato:diameter :normalDiameterOfLy mphNode obi:scalar value specification iao:is quality specification of mci:upper bound specification obi:has value specification Quality Anatomical Entity bfo:inheres in iao:has measurement unit label radlex:lymph node _:ln Value Specification _:vs1 uo:length unit uo:centimeter “1.0”^^xsd:float _:usp obi:has specified value Page 11 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 12. Example: Normal diameter of the pulmonary atery is between 1.6 and 2.6 cm. Quality Anatomical Entity radlex:pulmonary atery pato:normal pato:size pato:length pato:diameter :normalDiameterOfPu _:pulmAtery Value Specification bfo:inheres in obi:scalar value specification iao:has measurement uo:length unit _:vs1 uo:centimeter unit label _:vs2 “1.6”^^xsd:float obi:has specified value Normal Interval Specification iao:is quality specification of mci:interval specification ro:has part “2.6”^^xsd:float obi:has value specification lmonaryAtery mci:upper bound specification _:ubsp mci:lower bound specification _:lbsp _:isp Page 12 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 13. Example: Normal length of kidney along craniocaudal axis: 8.0 – 13.0 cm. Quality Anatomical Entity radlex:kidney _:kidney Value Specification pato:size bspo:transverse bfo:inheres in plane _:tp bspo:orthogonal_to obi:scalar value specification iao:has measurement uo:length unit _:vs1 uo:centimeter unit label _:vs2 “8.0”^^xsd:float obi:has specified value Normal Interval Specification iao:is quality specification of ro:has part “13.0”^^xsd:float obi:has value specification mci:interval specification _:isp pato:normal pato:length :normalLengthKidney Craniocaudal mci:upper bound specification _:ubsp mci:lower bound specification _:lbsp Page 13 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 14. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 14 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 15. Semantic Annotation of Radiology Reports Recognition of entities from ontologies and measurements “Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.” measurement value unit 23 mm radlex:lymph node Page 15 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 16. Semantic Annotation of Radiology Reports Functional Scope ? Detection of multiword terms independent from the ordering of the individual tokens. ? Respect sentence boundaries and map multiword terms only when they occur within these boundaries. ? Recognition of inflected forms of ontological concepts in the text such as detection of plural form or other grammatical inflections based on stemmed forms. Technical Realization ? builds on top of the UIMA framework ? adapted form of the UIMA Concept Mapper ? Outputs annotations in RDF Page 16 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 17. Running Example The running example used during the description of the resolution algorithm “Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.” Annotations: radlex:enlarged radlex:lymphadenopathy radlex:lymph node radlex:right radlex:paraaortic radlex:inferior radlex:inferior para-aortic lymph node radlex:kidney radlex:renal pedicle radlex:lateral aortic lymph node 2.3 uo:centimeter Page 17 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 18. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 18 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 19. Overview of Algorithm 1. Using ontology structure of RadLex and create spanning tree for annotations. 2. Compare Measurement values with Knowledge Model 3. Compute a ranking and select the best entity Page 19 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 20. Filter and Expand the Set of Annotations Use knowledge from the RadLex ontology RadLex entity imaging modality descriptor … anatomical entity clinical finding imaging observation Anatomical_Site enlarged lymphadenopathy lymph node right paraaortic inferior inferior para-aortic lymph node kidney renal pedicle lateral aortic lymph node Page 20 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 21. Minimal Spanning Tree Based on the set of relevant annotations we create a tree along the RadLex subclass hierarchy Sentence: “Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.” Page 21 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 22. Attach Normal Size Specifications For each entity of the spanning tree we retrieve available size specifications from the knowledge model. compValue: 0.73 compValue: 0.0 normal: 0-1 cm craniocaudal extension: 8-13 cm enlarged: 1-5 cm anterior posterior diameter: 4 cm ? compValue: 1.3 ?compValue: 2.48 ? compValue: 0.0 ?compValue: 0.73 Sentence: “Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.” Page 22 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 23. Propagate Comparison Value compValue: 0.73 compValue: 0.0 compValue: 0.0 compValue: 0.0 compValue: 0.0 Sentence: compValue: 0.0 “Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.” Page 23 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 24. Ranking and Selection of Best Entity Take ranking includes the position in the RadLex hierarchy ? Include position in RadLex hierarchy ? more specific entities are preferred ? Use threshold criteria to select best entity “Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.” Structured Representation: radlex:inferior para-aortic lymph node 2.3 uo:centimeter Page 24 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 25. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 25 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 26. Scope of the Algorithm The described algorithm resolves only one measurement-entity relation per sentence. In Scope Out of Scope ? Sentences with two measurements about different entities. E.g. “Splenomegaly with 23.0 x 14.5 x 8.5 cm and approx. 1.0 cm lesion.” ? Sentences with more than two measurements ? Sentences with one measurement ? Sentences with two measurements where both measurements are about the same entity. E.g. “Spleen now with 10.5 x 4.5 cm slightly smaller than in previous examination with 13.3 x 6.7 cm.” Page 26 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 27. Scope of Algorithm Analysis of sentences in- and out-of-scope Reports on Lymphoma Patients Reports on Internistic Patients 3980 249 791 71 78 31 1 2 3 4 >4 # sentences # measurements contained in a sentence #Sentences out of Scope: 8.25% 9129 982 2798 467 590 259 1 2 3 4 >4 # sentences # measurements contained in a sentence #Sentences out of Scope: 16.15% Page 27 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 28. Evaluation Schema Description Example correct ? The entity resolved is exactly what the measurement is about ? The radiologist cannot name a better entity “Lymph node in mediastium 1.8 cm” ? mediastinal lymph node (correct) ? The entity resolved is correct however it could be more specific ? The radiologist can name a better entity “Lymph node in jaw angle 1 cm” ? lymph node Radiologist: jugular lymph node unresolvable ? The sentence does not allow a resolution ? The algorithm did not resolve to a false entity “The biggest is now 2.7 cm.” “Previously 53x18 mm.” “Craniocaudal diameter now 10.8 cm.” false ? The resolved entity is false or no entity was resolved ? The radiologist can find the correct entity. “Large metastasis in liver with a size of 12.3 x 7.0 cm.” ? liver Radiologist: metastasis Page 28 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 29. Evaluation Results Evaluation results for 500 randomly selected sentences for each data set. Lymphoma Internistic 5% unresolvable 21% 50% 24% false (correct) correct unresolvable 4% 19% 44% 34% false correct (correct) resolved 84%, unresolved 16% recall: 0.8698 precision:0.8389 F-measure: 0.8540 resolved 80%, unresolved 20% recall:0.7904 precision:0.7864 F-measure: 0.7884 Page 29 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 30. Evaluation by Resolved Anatomical Entity Page 30 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved anatomical entity
  • 31. Evaluation of Annotator Using RadLex brings the follwowing two problems when used for German text: 1. Missing annotations ? Only about 25% of all RadLex concepts have German labels ? 6.59% of all sentences get no relevant annotations ? In 50% of the false resolutions, the correct entity was not annotated 2. Wrong annotations due to unspecific synonyms ? ‘radlex:breast mass’ has synonyms: ‘mass’, ‘nodule’, ‘lesion’, ‘nodular enhancement’ and ‘area of enhancement’ ? ‘mass’ or ‘lesion’ are annotated with ‘radlex:breast mass’ and then the resolution algorithm often falsely resolves to ‘breast mass’. Page 31 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 32. Limitations of a Pure Knowledge-based Approach We need to use the sentence context to better resolve more complex sentences. ? normal size specifications overlap ? measured entities are often not within the normal range ? annotation quality ? coverage ? level of detail of RadLex concepts ? wrong annotations due to synonyms ? restriction to sentence boundaries ? multiple measurements in one sentence ? one measurement about multiple entities Page 32 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 33. Agenda Measurements in Radiology Knowledge Model Semantic Annotation of Radiology Reports Extraction Algorithm Evaluation Outlook Page 33 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 34. Outlook Adaptation of the algorithm already made: ? Use adapted version of RadLex ? Use statistics from the evaluated data set ? Use distance within sentence ? Now all sentences are in scope Ongoing: ? Include context information about the quality: normal, enlarged… ? include annotations from previous sentence for unresolved sentences. ? Density measurements Page 34 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved
  • 35. Application Longitudinal view on reports from consequtive examinations Page 35 September 2014 Corporate Technology Restricted ? Siemens AG 2014. All rights reserved