際際滷

際際滷Share a Scribd company logo
Laplace Transform
BIOE 4200
Why use Laplace Transforms?
Find solution to differential equation
using algebra
Relationship to Fourier Transform
allows easy way to characterize
systems
No need for convolution of input and
differential equation solution
Useful with multiple processes in
system
How to use Laplace
Find differential equations that describe
system
Obtain Laplace transform
Perform algebra to solve for output or
variable of interest
Apply inverse transform to find solution
What are Laplace transforms?


+





==
==
j
j
st1
0
st
dse)s(F
j2
1
)}s(F{L)t(f
dte)t(f)}t(f{L)s(F
 t is real, s is complex!
 Inverse requires complex analysis to solve
 Note transform: f(t)  F(s), where t is integrated
and s is variable
 Conversely F(s)  f(t), t is variable and s is
integrated
 Assumes f(t) = 0 for all t < 0
Evaluating F(s) = L{f(t)}
Hard Way  do the integral

 



 
+



=
=
+
===
=
===
=
0
st
0 0
t)as(stat
at
0
st
dt)tsin(e)s(F
tsin)t(f
as
1
dtedtee)s(F
e)t(f
s
1
)10(
s
1
dte)s(F
1)t(flet
let
let
Integrate by parts
Evaluating F(s)=L{f(t)}- Hard Way
remember  = vduuvudv
)tcos(v,dt)tsin(dv
dtsedu,eu stst
==
== 

 


 


==
0
stst
0 0
st
0
stst
dt)tcos(es)1(e
dt)tcos(es)tcos(e[dt)tsin(e ]
)tsin(v,dt)tcos(dv
dtsedu,eu stst
==
== 








+=+
=
0
stst
0
st
0
st
0
st
dt)tsin(es)0(edt)tsin(es)tsin(e[
dt)tcos(e
]
2
0
st
0
st2
0 0
st2st
s1
1
dt)tsin(e
1dt)tsin(e)s1(
dt)tsin(es1dt)tsin(se
+
=
=+
==


 




 

let
let
Substituting, we get:
It only gets worse
Evaluating F(s) = L{f(t)}
This is the easy way ...
Recognize a few different transforms
See table 2.3 on page 42 in textbook
Or see handout ....
Learn a few different properties
Do a little math
Table of selected Laplace
Transforms
1s
1
)s(F)t(u)tsin()t(f
1s
s
)s(F)t(u)tcos()t(f
as
1
)s(F)t(ue)t(f
s
1
)s(F)t(u)t(f
2
2
at
+
==
+
==
+
==
==
More transforms
1n
n
s
!n
)s(F)t(ut)t(f +
==
66
5
2
1
s
120
s
!5
)s(F)t(ut)t(f,5n
s
!1
)s(F)t(tu)t(f,1n
s
1
s
!0
)s(F)t(u)t(f,0n
====
===
====
1)s(F)t()t(f =隆=
Note on step functions in Laplace



=
0
st
dte)t(f)}t(f{L
0t,0)t(u
0t,1)t(u
<=
=
Unit step function definition:
Used in conjunction with f(t)  f(t)u(t)
because of Laplace integral limits:
Properties of Laplace Transforms
Linearity
Scaling in time
Time shift
frequency or s-plane shift
Multiplication by tn
Integration
Differentiation
Properties: Linearity
)s(Fc)s(Fc)}t(fc)t(fc{L 22112211 +=+
Example :
1s
1
)
1s
)1s()1s(
(
2
1
)
1s
1
1s
1
(
2
1
}e{L
2
1
}e{L
2
1
}e
2
1
e
2
1
{y
)}t{sinh(L
22
tt
tt

=

+
=
+


=
=
=


Proof :
)s(Fc)s(Fc
dte)t(fcdte)t(fc
dte)]t(fc)t(fc[
)}t(fc)t(fc{L
2211
0
st
22
0
st
11
st
22
0
11
2211
+
=+
=+
=+
)
a
s
(F
a
1
)}at(f{L =
Example :
22
22
2
2
s
)
s
(
1
)1
)s(
1
(
1
)}t{sin(L
+

=
+


=+


 Proof :
)
a
s
(F
a
1
due)u(f
a
1
du
a
1
dt,
a
u
t,atu
dte)at(f
)}at(f{L
a
0
u)
a
s
(
0
st






=
===
=
=
let
Properties: Scaling in Time
Properties: Time Shift
)s(Fe)}tt(u)tt(f{L 0st
00

=
Example :
as
e
)}10t(ue{L
s10
)10t(a
+
=


Proof :
)s(Fedue)u(fe
due)u(f
tut,ttu
dte)tt(f
dte)tt(u)tt(f
)}tt(u)tt(f{L
00
0
0
0
st
0
sust
t
0
)tu(s
00
t
st
0
0
st
00
00




+








=
=
+==
=
=
=
let
Properties: S-plane (frequency)
shift
)as(F)}t(fe{L at
+=
Example :
22
at
)as(
)}tsin(e{L
++

= Proof :
)as(F
dte)t(f
dte)t(fe
)}t(fe{L
0
t)as(
0
stat
at
+
=
=
=



+
Properties: Multiplication by tn
)s(F
ds
d
)1()}t(ft{L n
n
nn
=
Example :
1n
n
n
n
n
s
!n
)
s
1
(
ds
d
)1(
)}t(ut{L
+
=
=
Proof :
)s(F
s
)1(dte)t(f
s
)1(
dte
s
)t(f)1(
dtet)t(f
dte)t(ft)}t(ft{L
n
n
n
0
st
n
n
n
0
st
n
n
n
0
stn
0
stnn


=



=



=
==
The D Operator
1. Differentiation shorthand
2. Integration shorthand
)t(f
dt
d
)t(fD
dt
)t(df
)t(Df
2
2
2
=
=
)t(f)t(Dg
dt)t(f)t(g
t
=
= 
)t(fD)t(g
dt)t(f)t(g
1
a
t
a

=
= if
then then
if
Properties: Integrals
s
)s(F
)}t(fD{L 1
0 =
Example :
)}t{sin(L
1s
1
)
1s
s
)(
s
1
(
)}tcos(D{L
22
1
0
+
=
+
=
Proof :
let
stst
0
st
1
0
e
s
1
v,dtedv
dt)t(fdu),t(gu
dte)t(g)}t{sin(L
)t(fD)t(g




==
==
=
=



=
=+= 
t
0
st
0
st
dt)t(f)t(g
s
)s(F
dte)t(f
s
1
]e)t(g
s
1
[



<=
0
)()( dtetft st
If t=0, g(t)=0
for so
slower than

=
0
)()( tgdttf 0st
e
Properties: Derivatives
(this is the big one)
)0(f)s(sF)}t(Df{L +
=
Example :
)}tsin({L
1s
1
1s
)1s(s
1
1s
s
)0(f
1s
s
)}tcos(D{L
2
2
22
2
2
2
2
=
+

+
+
=
+
=
+
=
+
Proof :
)s(sF)0(f
dte)t(fs)]t(fe[
)t(fv,dt)t(f
dt
d
dv
sedu,eu
dte)t(f
dt
d
)}t(Df{L
0
st
0
st
stst
0
st
+
=+
==
==
=
+







let
Difference in
The values are only different if f(t) is not
continuous @ t=0
Example of discontinuous function: u(t)
)0(f&)0(f),0(f +
1)0(u)0(f
1)t(ulim)0(f
0)t(ulim)0(f
0t
0t
==
==
==
+


+
?)}t(fD{L 2
=
)0('f)0(sF)s(Fs)0('f))0(f)s(sF(s
)0('f)}t(Df{sL)0(g)s(sG)}t(gD{L
)0('f)0(Df)0(g),t(Df)t(g
2
2
==
===
===let
)0(f)0(sf)0('fs)0(fs)s(Fs)}t(fD{L )'1n()'2n()2n()1n(nn 
= 
NOTE: to take
you need the value @ t=0 for
called initial conditions!
We will use this to solve differential equations!

)t(f),t(Df),...t(fD),t(fD 2n1n
)}t(fD{L n
Properties: Nth order derivatives
Properties: Nth order derivatives
)0(f)s(sF)}t(Df{L =
)}t(fD{L 2
)0(f)s(sF)}t(Df{L)}t(g{L)s(G
)0('f)0(g
)t(Df)t(g
)0(g)s(sG)}t(Dg{L
)t(fD)t(Dgand)t(Df)t(g 2
===
=
=
=
==
)0('f)0(sf)s(Fs)0('f)]0(f)s(sF[s)0(g)s(sG)}t(Dg{L 2
===
.etc),t(fD),t(fD 43
Start with
Now apply again
let
then
remember
Can repeat for
)0(f)0(sf)0('fs)0(fs)s(Fs)}t(fD{L )'1n()'2n()2n()1n(nn 
=
Relevant Book Sections
Modeling - 2.2
Linear Systems - 2.3, page 38 only
Laplace - 2.4
Transfer functions  2.5 thru ex 2.4

More Related Content

Laplace

  • 2. Why use Laplace Transforms? Find solution to differential equation using algebra Relationship to Fourier Transform allows easy way to characterize systems No need for convolution of input and differential equation solution Useful with multiple processes in system
  • 3. How to use Laplace Find differential equations that describe system Obtain Laplace transform Perform algebra to solve for output or variable of interest Apply inverse transform to find solution
  • 4. What are Laplace transforms? + == == j j st1 0 st dse)s(F j2 1 )}s(F{L)t(f dte)t(f)}t(f{L)s(F t is real, s is complex! Inverse requires complex analysis to solve Note transform: f(t) F(s), where t is integrated and s is variable Conversely F(s) f(t), t is variable and s is integrated Assumes f(t) = 0 for all t < 0
  • 5. Evaluating F(s) = L{f(t)} Hard Way do the integral + = = + === = === = 0 st 0 0 t)as(stat at 0 st dt)tsin(e)s(F tsin)t(f as 1 dtedtee)s(F e)t(f s 1 )10( s 1 dte)s(F 1)t(flet let let Integrate by parts
  • 6. Evaluating F(s)=L{f(t)}- Hard Way remember = vduuvudv )tcos(v,dt)tsin(dv dtsedu,eu stst == == == 0 stst 0 0 st 0 stst dt)tcos(es)1(e dt)tcos(es)tcos(e[dt)tsin(e ] )tsin(v,dt)tcos(dv dtsedu,eu stst == == +=+ = 0 stst 0 st 0 st 0 st dt)tsin(es)0(edt)tsin(es)tsin(e[ dt)tcos(e ] 2 0 st 0 st2 0 0 st2st s1 1 dt)tsin(e 1dt)tsin(e)s1( dt)tsin(es1dt)tsin(se + = =+ == let let Substituting, we get: It only gets worse
  • 7. Evaluating F(s) = L{f(t)} This is the easy way ... Recognize a few different transforms See table 2.3 on page 42 in textbook Or see handout .... Learn a few different properties Do a little math
  • 8. Table of selected Laplace Transforms 1s 1 )s(F)t(u)tsin()t(f 1s s )s(F)t(u)tcos()t(f as 1 )s(F)t(ue)t(f s 1 )s(F)t(u)t(f 2 2 at + == + == + == ==
  • 10. Note on step functions in Laplace = 0 st dte)t(f)}t(f{L 0t,0)t(u 0t,1)t(u <= = Unit step function definition: Used in conjunction with f(t) f(t)u(t) because of Laplace integral limits:
  • 11. Properties of Laplace Transforms Linearity Scaling in time Time shift frequency or s-plane shift Multiplication by tn Integration Differentiation
  • 12. Properties: Linearity )s(Fc)s(Fc)}t(fc)t(fc{L 22112211 +=+ Example : 1s 1 ) 1s )1s()1s( ( 2 1 ) 1s 1 1s 1 ( 2 1 }e{L 2 1 }e{L 2 1 }e 2 1 e 2 1 {y )}t{sinh(L 22 tt tt = + = + = = = Proof : )s(Fc)s(Fc dte)t(fcdte)t(fc dte)]t(fc)t(fc[ )}t(fc)t(fc{L 2211 0 st 22 0 st 11 st 22 0 11 2211 + =+ =+ =+
  • 13. ) a s (F a 1 )}at(f{L = Example : 22 22 2 2 s ) s ( 1 )1 )s( 1 ( 1 )}t{sin(L + = + =+ Proof : ) a s (F a 1 due)u(f a 1 du a 1 dt, a u t,atu dte)at(f )}at(f{L a 0 u) a s ( 0 st = === = = let Properties: Scaling in Time
  • 14. Properties: Time Shift )s(Fe)}tt(u)tt(f{L 0st 00 = Example : as e )}10t(ue{L s10 )10t(a + = Proof : )s(Fedue)u(fe due)u(f tut,ttu dte)tt(f dte)tt(u)tt(f )}tt(u)tt(f{L 00 0 0 0 st 0 sust t 0 )tu(s 00 t st 0 0 st 00 00 + = = +== = = = let
  • 15. Properties: S-plane (frequency) shift )as(F)}t(fe{L at += Example : 22 at )as( )}tsin(e{L ++ = Proof : )as(F dte)t(f dte)t(fe )}t(fe{L 0 t)as( 0 stat at + = = = +
  • 16. Properties: Multiplication by tn )s(F ds d )1()}t(ft{L n n nn = Example : 1n n n n n s !n ) s 1 ( ds d )1( )}t(ut{L + = = Proof : )s(F s )1(dte)t(f s )1( dte s )t(f)1( dtet)t(f dte)t(ft)}t(ft{L n n n 0 st n n n 0 st n n n 0 stn 0 stnn = = = ==
  • 17. The D Operator 1. Differentiation shorthand 2. Integration shorthand )t(f dt d )t(fD dt )t(df )t(Df 2 2 2 = = )t(f)t(Dg dt)t(f)t(g t = = )t(fD)t(g dt)t(f)t(g 1 a t a = = if then then if
  • 18. Properties: Integrals s )s(F )}t(fD{L 1 0 = Example : )}t{sin(L 1s 1 ) 1s s )( s 1 ( )}tcos(D{L 22 1 0 + = + = Proof : let stst 0 st 1 0 e s 1 v,dtedv dt)t(fdu),t(gu dte)t(g)}t{sin(L )t(fD)t(g == == = = = =+= t 0 st 0 st dt)t(f)t(g s )s(F dte)t(f s 1 ]e)t(g s 1 [ <= 0 )()( dtetft st If t=0, g(t)=0 for so slower than = 0 )()( tgdttf 0st e
  • 19. Properties: Derivatives (this is the big one) )0(f)s(sF)}t(Df{L + = Example : )}tsin({L 1s 1 1s )1s(s 1 1s s )0(f 1s s )}tcos(D{L 2 2 22 2 2 2 2 = + + + = + = + = + Proof : )s(sF)0(f dte)t(fs)]t(fe[ )t(fv,dt)t(f dt d dv sedu,eu dte)t(f dt d )}t(Df{L 0 st 0 st stst 0 st + =+ == == = + let
  • 20. Difference in The values are only different if f(t) is not continuous @ t=0 Example of discontinuous function: u(t) )0(f&)0(f),0(f + 1)0(u)0(f 1)t(ulim)0(f 0)t(ulim)0(f 0t 0t == == == + +
  • 21. ?)}t(fD{L 2 = )0('f)0(sF)s(Fs)0('f))0(f)s(sF(s )0('f)}t(Df{sL)0(g)s(sG)}t(gD{L )0('f)0(Df)0(g),t(Df)t(g 2 2 == === ===let )0(f)0(sf)0('fs)0(fs)s(Fs)}t(fD{L )'1n()'2n()2n()1n(nn = NOTE: to take you need the value @ t=0 for called initial conditions! We will use this to solve differential equations! )t(f),t(Df),...t(fD),t(fD 2n1n )}t(fD{L n Properties: Nth order derivatives
  • 22. Properties: Nth order derivatives )0(f)s(sF)}t(Df{L = )}t(fD{L 2 )0(f)s(sF)}t(Df{L)}t(g{L)s(G )0('f)0(g )t(Df)t(g )0(g)s(sG)}t(Dg{L )t(fD)t(Dgand)t(Df)t(g 2 === = = = == )0('f)0(sf)s(Fs)0('f)]0(f)s(sF[s)0(g)s(sG)}t(Dg{L 2 === .etc),t(fD),t(fD 43 Start with Now apply again let then remember Can repeat for )0(f)0(sf)0('fs)0(fs)s(Fs)}t(fD{L )'1n()'2n()2n()1n(nn =
  • 23. Relevant Book Sections Modeling - 2.2 Linear Systems - 2.3, page 38 only Laplace - 2.4 Transfer functions 2.5 thru ex 2.4